The output of an MCP server tool call can be one of several types, but
to date, we treated all outputs as text by showing the serialized JSON
as the "tool output" in Codex:
25a9949c49/codex-rs/mcp-types/src/lib.rs (L96-L101)
This PR adds support for the `ImageContent` variant so we can now
display an image output from an MCP tool call.
In making this change, we introduce a new
`ResponseInputItem::McpToolCallOutput` variant so that we can work with
the `mcp_types::CallToolResult` directly when the function call is made
to an MCP server.
Though arguably the more significant change is the introduction of
`HistoryCell::CompletedMcpToolCallWithImageOutput`, which is a cell that
uses `ratatui_image` to render an image into the terminal. To support
this, we introduce `ImageRenderCache`, cache a
`ratatui_image::picker::Picker`, and `ensure_image_cache()` to cache the
appropriate scaled image data and dimensions based on the current
terminal size.
To test, I created a minimal `package.json`:
```json
{
"name": "kitty-mcp",
"version": "1.0.0",
"type": "module",
"description": "MCP that returns image of kitty",
"main": "index.js",
"dependencies": {
"@modelcontextprotocol/sdk": "^1.12.0"
}
}
```
with the following `index.js` to define the MCP server:
```js
#!/usr/bin/env node
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
import { readFile } from "node:fs/promises";
import { join } from "node:path";
const IMAGE_URI = "image://Ada.png";
const server = new McpServer({
name: "Demo",
version: "1.0.0",
});
server.tool(
"get-cat-image",
"If you need a cat image, this tool will provide one.",
async () => ({
content: [
{ type: "image", data: await getAdaPngBase64(), mimeType: "image/png" },
],
})
);
server.resource("Ada the Cat", IMAGE_URI, async (uri) => {
const base64Image = await getAdaPngBase64();
return {
contents: [
{
uri: uri.href,
mimeType: "image/png",
blob: base64Image,
},
],
};
});
async function getAdaPngBase64() {
const __dirname = new URL(".", import.meta.url).pathname;
// From 9705ce2c59/assets/Ada.png
const filePath = join(__dirname, "Ada.png");
const imageData = await readFile(filePath);
const base64Image = imageData.toString("base64");
return base64Image;
}
const transport = new StdioServerTransport();
await server.connect(transport);
```
With the local changes from this PR, I added the following to my
`config.toml`:
```toml
[mcp_servers.kitty]
command = "node"
args = ["/Users/mbolin/code/kitty-mcp/index.js"]
```
Running the TUI from source:
```
cargo run --bin codex -- --model o3 'I need a picture of a cat'
```
I get:
<img width="732" alt="image"
src="https://github.com/user-attachments/assets/bf80b721-9ca0-4d81-aec7-77d6899e2869"
/>
Now, that said, I have only tested in iTerm and there is definitely some
funny business with getting an accurate character-to-pixel ratio
(sometimes the `CompletedMcpToolCallWithImageOutput` thinks it needs 10
rows to render instead of 4), so there is still work to be done here.
The motivation behind this PR is to make it so a `HistoryCell` is more
like a `WidgetRef` that knows how to render itself into a `Rect` so that
it can be backed by something other than a `Vec<Line>`. Because a
`HistoryCell` is intended to appear in a scrollable list, we want to
ensure the stack of cells can be scrolled one `Line` at a time even if
the `HistoryCell` is not backed by a `Vec<Line>` itself.
To this end, we introduce the `CellWidget` trait whose key method is:
```
fn render_window(&self, first_visible_line: usize, area: Rect, buf: &mut Buffer);
```
The `first_visible_line` param is what differs from
`WidgetRef::render_ref()`, as a `CellWidget` needs to know the offset
into its "full view" at which it should start rendering.
The bookkeeping in `ConversationHistoryWidget` has been updated
accordingly to ensure each `CellWidget` in the history is rendered
appropriately.
Prior to this PR, I would frequently see glyphs from previous frames
"bleed" through like this:

I think this was due to two issues (now addressed in this PR):
* We were not making use of `ratatui::widgets::Clear` to clear out the
buffer before drawing into it.
* To calculate the `width` used with `wrapped_line_count_for_cell()`, we
were not accounting for the scrollbar.
* Now we calculate `effective_width` using
`inner.width.saturating_sub(1)` where the `1` is for the scrollbar.
* We compute `text_area` using `effective_with` and pass the `text_area`
to `paragraph.render()`.
* We eliminate the conditional `needs_scrollbar` check and always call
`render(Scrollbar)`
I suspect this bug was introduced in
https://github.com/openai/codex/pull/937, though I did not try to
verify: I'm just happy that it appears to be fixed!
Previously, if the first user message was sent with the command
invocation, e.g.:
```
$ cargo run --bin codex 'hello'
```
Then the user message was added as the first entry in the history and
then `is_first_event` would be `false` here:
031df77dfb/codex-rs/tui/src/conversation_history_widget.rs (L178-L179)
which would prevent the "welcome" message with things like the the model
version from displaying.
The fix in this PR is twofold:
* Reorganize the logic so the `ChatWidget` constructor stores
`initial_user_message` rather than sending it right away. Now inside
`handle_codex_event()`, it waits for the `SessionConfigured` event and
sends the `initial_user_message`, if it exists.
* In `conversation_history_widget.rs`, `add_session_info()` checks to
see whether a `WelcomeMessage` exists in the history when determining
the value of `has_welcome_message`. By construction, we expect that
`WelcomeMessage` is always the first message (in which case the existing
`let is_first_event = self.entries.is_empty();` logic would be sound),
but we decide to be extra defensive in case an `EventMsg::Error` is
processed before `EventMsg::SessionConfigured`.
As discussed on
699ec5a87f (commitcomment-156776835),
to properly support scrolling long content in Ratatui for a sequence of
cells, we need to:
* take the `Vec<Line>` for each cell
* using the wrapping logic we want to use at render time, compute the
_effective line count_ using `Paragraph::line_count()` (see
`wrapped_line_count_for_cell()` in this PR)
* sum up the effective line count to compute the height of the area
being scrolled
* given a `scroll_position: usize`, index into the list of "effective
lines" and accumulate the appropriate `Vec<Line>` for the cells that
should be displayed
* take that `Vec<Line>` to create a `Paragraph` and use the same
line-wrapping policy that was used in `wrapped_line_count_for_cell()`
* display the resulting `Paragraph` and use the accounting to display a
scrollbar with the appropriate thumb size and offset without having to
render the `Vec<Line>` for the full history
With this change, lines wrap as I expect and everything appears to
redraw correctly as I resize my terminal!
* update `SessionConfigured` event to include the UUID for the session
* show the UUID in the Rust TUI
* use local timestamps in log files instead of UTC
* include timestamps in log file names for easier discovery
As shown in the screenshot, we now include reasoning messages from the
model in the TUI under the heading "codex reasoning":

To ensure these are visible by default when using `o4-mini`, this also
changes the default value for `summary` (formerly `generate_summary`,
which is deprecated in favor of `summary` according to the docs) from
unset to `"auto"`.
This is a substantial PR to add support for the chat completions API,
which in turn makes it possible to use non-OpenAI model providers (just
like in the TypeScript CLI):
* It moves a number of structs from `client.rs` to `client_common.rs` so
they can be shared.
* It introduces support for the chat completions API in
`chat_completions.rs`.
* It updates `ModelProviderInfo` so that `env_key` is `Option<String>`
instead of `String` (for e.g., ollama) and adds a `wire_api` field
* It updates `client.rs` to choose between `stream_responses()` and
`stream_chat_completions()` based on the `wire_api` for the
`ModelProviderInfo`
* It updates the `exec` and TUI CLIs to no longer fail if the
`OPENAI_API_KEY` environment variable is not set
* It updates the TUI so that `EventMsg::Error` is displayed more
prominently when it occurs, particularly now that it is important to
alert users to the `CodexErr::EnvVar` variant.
* `CodexErr::EnvVar` was updated to include an optional `instructions`
field so we can preserve the behavior where we direct users to
https://platform.openai.com if `OPENAI_API_KEY` is not set.
* Cleaned up the "welcome message" in the TUI to ensure the model
provider is displayed.
* Updated the docs in `codex-rs/README.md`.
To exercise the chat completions API from OpenAI models, I added the
following to my `config.toml`:
```toml
model = "gpt-4o"
model_provider = "openai-chat-completions"
[model_providers.openai-chat-completions]
name = "OpenAI using Chat Completions"
base_url = "https://api.openai.com/v1"
env_key = "OPENAI_API_KEY"
wire_api = "chat"
```
Though to test a non-OpenAI provider, I installed ollama with mistral
locally on my Mac because ChatGPT said that would be a good match for my
hardware:
```shell
brew install ollama
ollama serve
ollama pull mistral
```
Then I added the following to my `~/.codex/config.toml`:
```toml
model = "mistral"
model_provider = "ollama"
```
Note this code could certainly use more test coverage, but I want to get
this in so folks can start playing with it.
For reference, I believe https://github.com/openai/codex/pull/247 was
roughly the comparable PR on the TypeScript side.
I noticed that sometimes I would enter a new message, but it would not
show up in the conversation history. Even if I focused the conversation
history and tried to scroll it to the bottom, I could not bring it into
view. At first, I was concerned that messages were not making it to the
UI layer, but I added debug statements and verified that was not the
issue.
It turned out that, previous to this PR, lines that are wider than the
viewport take up multiple lines of vertical space because `wrap()` was
set on the `Paragraph` inside the scroll pane. Unfortunately, that broke
our "scrollbar math" that assumed each `Line` contributes one line of
height in the UI.
This PR removes the `wrap()`, but introduces a new issue, which is that
now you cannot see long lines without resizing your terminal window. For
now, I filed an issue here:
https://github.com/openai/codex/issues/869
I think the long-term fix is to fix our math so it calculates the height
of a `Line` after it is wrapped given the current width of the viewport.
The existing `b` and `space` are sufficient and `d` and `u` default to
half-page scrolling in `less`, so the way we supported `d` and `u`
wasn't faithful to that, anyway:
https://man7.org/linux/man-pages/man1/less.1.html
If we decide to bring `d` and `u` back, they should probably match
`less`?
This changes how instantiating `Config` works and also adds
`approval_policy` and `sandbox_policy` as fields. The idea is:
* All fields of `Config` have appropriate default values.
* `Config` is initially loaded from `~/.codex/config.toml`, so values in
`config.toml` will override those defaults.
* Clients must instantiate `Config` via
`Config::load_with_overrides(ConfigOverrides)` where `ConfigOverrides`
has optional overrides that are expected to be settable based on CLI
flags.
The `Config` should be defined early in the program and then passed
down. Now functions like `init_codex()` take fewer individual parameters
because they can just take a `Config`.
Also, `Config::load()` used to fail silently if `~/.codex/config.toml`
had a parse error and fell back to the default config. This seemed
really bad because it wasn't clear why the values in my `config.toml`
weren't getting picked up. I changed things so that
`load_with_overrides()` returns `Result<Config>` and verified that the
various CLIs print a reasonable error if `config.toml` is malformed.
Finally, I also updated the TUI to show which **sandbox** value is being
used, as we do for other key values like **model** and **approval**.
This was also a reminder that the various values of `--sandbox` are
honored on Linux but not macOS today, so I added some TODOs about fixing
that.
It is intuitive to try to scroll the conversation history using the
mouse in the TUI, but prior to this change, we only supported scrolling
via keyboard events.
This PR enables mouse capture upon initialization (and disables it on
exit) such that we get `ScrollUp` and `ScrollDown` events in
`codex-rs/tui/src/app.rs`. I initially mapped each event to scrolling by
one line, but that felt sluggish. I decided to introduce
`ScrollEventHelper` so we could debounce scroll events and measure the
number of scroll events in a 100ms window to determine the "magnitude"
of the scroll event. I put in a basic heuristic to start, but perhaps
someone more motivated can play with it over time.
`ScrollEventHelper` takes care of handling the atomic fields and thread
management to ensure an `AppEvent::Scroll` event is pumped back through
the event loop at the appropriate time with the accumulated delta.
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.