Major architecture overhaul to address RunPod Docker limitations: Core Infrastructure: - Add base_service.py: Abstract base class for all AI services - Add service_manager.py: Process lifecycle management - Add core/requirements.txt: Core dependencies Model Services (Standalone Python): - Add models/vllm/server.py: Qwen 2.5 7B text generation - Add models/flux/server.py: Flux.1 Schnell image generation - Add models/musicgen/server.py: MusicGen Medium music generation - Each service inherits from GPUService base class - OpenAI-compatible APIs - Standalone execution support Ansible Deployment: - Add playbook.yml: Comprehensive deployment automation - Add ansible.cfg: Ansible configuration - Add inventory.yml: Localhost inventory - Tags: base, python, dependencies, models, tailscale, validate, cleanup Scripts: - Add scripts/install.sh: Full installation wrapper - Add scripts/download-models.sh: Model download wrapper - Add scripts/start-all.sh: Start orchestrator - Add scripts/stop-all.sh: Stop all services Documentation: - Update ARCHITECTURE.md: Document distributed VPS+GPU architecture Benefits: - No Docker: Avoids RunPod CAP_SYS_ADMIN limitations - Fully reproducible via Ansible - Extensible: Add models in 3 steps - Direct Python execution (no container overhead) 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
215 lines
6.5 KiB
Markdown
215 lines
6.5 KiB
Markdown
# RunPod Multi-Modal AI Architecture
|
|
|
|
**Clean, extensible distributed AI infrastructure spanning VPS and GPU**
|
|
|
|
## Design Principles
|
|
|
|
1. **Distributed** - VPS (UI/proxy) + GPU (models) connected via Tailscale
|
|
2. **No Docker on GPU** - Direct Python for RunPod compatibility
|
|
3. **Extensible** - Adding new models requires minimal code
|
|
4. **Maintainable** - Clear structure and separation of concerns
|
|
5. **Simple** - One command to start, easy to debug
|
|
6. **OpenAI Compatible** - Works with standard AI tools
|
|
|
|
## Directory Structure
|
|
|
|
```
|
|
runpod/
|
|
├── core/ # Core infrastructure
|
|
│ ├── base_service.py # Abstract base class for all services
|
|
│ ├── service_manager.py # Process lifecycle management
|
|
│ └── requirements.txt # Core dependencies
|
|
│
|
|
├── model-orchestrator/ # Request orchestration
|
|
│ ├── orchestrator.py # Main orchestrator (process-based)
|
|
│ ├── models.yaml # Model registry (simple config)
|
|
│ └── requirements.txt # Orchestrator dependencies
|
|
│
|
|
├── models/ # Model service implementations
|
|
│ ├── vllm/ # Text generation
|
|
│ │ ├── server.py # vLLM service (inherits base_service)
|
|
│ │ └── requirements.txt # vLLM dependencies
|
|
│ │
|
|
│ ├── flux/ # Image generation
|
|
│ │ ├── server.py # Flux service
|
|
│ │ └── requirements.txt # Flux dependencies
|
|
│ │
|
|
│ └── musicgen/ # Music generation
|
|
│ ├── server.py # MusicGen service
|
|
│ └── requirements.txt # AudioCraft dependencies
|
|
│
|
|
├── scripts/ # Deployment & management
|
|
│ ├── install.sh # Install all dependencies
|
|
│ ├── download-models.sh # Pre-download models
|
|
│ ├── start-all.sh # Start orchestrator + services
|
|
│ ├── stop-all.sh # Stop all services
|
|
│ └── prepare-template.sh # RunPod template preparation
|
|
│
|
|
├── systemd/ # Optional systemd services
|
|
│ ├── ai-orchestrator.service
|
|
│ └── install-services.sh
|
|
│
|
|
└── docs/ # Documentation
|
|
├── ADDING_MODELS.md # Guide for adding new models
|
|
├── DEPLOYMENT.md # Deployment guide
|
|
└── RUNPOD_TEMPLATE.md # Template creation guide
|
|
```
|
|
|
|
## Component Responsibilities
|
|
|
|
### Core (`core/`)
|
|
- **base_service.py**: Abstract base class for all model services
|
|
- Health check endpoint
|
|
- Graceful shutdown
|
|
- Logging configuration
|
|
- Common utilities
|
|
|
|
- **service_manager.py**: Process lifecycle management
|
|
- Start/stop services
|
|
- Health monitoring
|
|
- Auto-restart on failure
|
|
- Resource cleanup
|
|
|
|
### Orchestrator (`model-orchestrator/`)
|
|
- **orchestrator.py**: Routes requests to appropriate model
|
|
- Reads `models.yaml` configuration
|
|
- Manages model switching
|
|
- Proxies requests to services
|
|
- OpenAI-compatible API
|
|
|
|
- **models.yaml**: Simple model registry
|
|
```yaml
|
|
models:
|
|
model-name:
|
|
type: text|image|audio
|
|
service_script: path/to/server.py
|
|
port: 8001
|
|
startup_time: 120
|
|
endpoint: /v1/chat/completions
|
|
```
|
|
|
|
### Models (`models/`)
|
|
Each model directory contains:
|
|
- **server.py**: Service implementation (inherits `BaseService`)
|
|
- **requirements.txt**: Model-specific dependencies
|
|
|
|
Services are standalone - can run independently for testing.
|
|
|
|
### Scripts (`scripts/`)
|
|
- **install.sh**: Install Python packages for all services
|
|
- **download-models.sh**: Pre-download models to `/workspace`
|
|
- **start-all.sh**: Start orchestrator (which manages model services)
|
|
- **stop-all.sh**: Graceful shutdown of all services
|
|
- **prepare-template.sh**: RunPod template preparation
|
|
|
|
## Adding a New Model (3 steps)
|
|
|
|
### 1. Create Model Service
|
|
|
|
```python
|
|
# models/mymodel/server.py
|
|
from core.base_service import BaseService
|
|
|
|
class MyModelService(BaseService):
|
|
def __init__(self):
|
|
super().__init__(
|
|
name="mymodel",
|
|
port=8004
|
|
)
|
|
|
|
async def initialize(self):
|
|
"""Load model"""
|
|
self.model = load_my_model()
|
|
|
|
def create_app(self):
|
|
"""Define FastAPI routes"""
|
|
@self.app.post("/v1/mymodel/generate")
|
|
async def generate(request: MyRequest):
|
|
return self.model.generate(request.prompt)
|
|
|
|
if __name__ == "__main__":
|
|
service = MyModelService()
|
|
service.run()
|
|
```
|
|
|
|
### 2. Add to Registry
|
|
|
|
```yaml
|
|
# model-orchestrator/models.yaml
|
|
models:
|
|
mymodel:
|
|
type: custom
|
|
service_script: models/mymodel/server.py
|
|
port: 8004
|
|
startup_time: 60
|
|
endpoint: /v1/mymodel/generate
|
|
```
|
|
|
|
### 3. Add Dependencies
|
|
|
|
```
|
|
# models/mymodel/requirements.txt
|
|
transformers==4.36.0
|
|
torch==2.1.0
|
|
```
|
|
|
|
That's it! The orchestrator handles everything else.
|
|
|
|
## Request Flow
|
|
|
|
```
|
|
Client Request
|
|
↓
|
|
Orchestrator (port 9000)
|
|
↓ (determines model from endpoint)
|
|
Model Service (port 8001-800X)
|
|
↓
|
|
Response
|
|
```
|
|
|
|
## Startup Flow
|
|
|
|
1. Run `scripts/start-all.sh`
|
|
2. Orchestrator starts on port 9000
|
|
3. Orchestrator reads `models.yaml`
|
|
4. On first request:
|
|
- Orchestrator starts appropriate model service
|
|
- Waits for health check
|
|
- Proxies request
|
|
5. On subsequent requests:
|
|
- If same model: direct proxy
|
|
- If different model: stop current, start new
|
|
|
|
## Benefits
|
|
|
|
- **Simple**: No Docker complexity, just Python
|
|
- **Fast**: No container overhead, direct execution
|
|
- **Debuggable**: Standard Python processes, easy to inspect
|
|
- **Extensible**: Add models by creating one file + YAML entry
|
|
- **Maintainable**: Clear structure, base classes, DRY principles
|
|
- **Portable**: Works anywhere Python runs (local, RunPod, other cloud)
|
|
|
|
## Development Workflow
|
|
|
|
```bash
|
|
# Local development
|
|
python3 models/vllm/server.py # Test service directly
|
|
python3 model-orchestrator/orchestrator.py # Test orchestrator
|
|
|
|
# RunPod deployment
|
|
./scripts/install.sh # Install dependencies
|
|
./scripts/download-models.sh # Pre-download models
|
|
./scripts/start-all.sh # Start everything
|
|
|
|
# Create template
|
|
./scripts/prepare-template.sh # Prepare for template save
|
|
```
|
|
|
|
## Future Enhancements
|
|
|
|
- Load balancing across multiple GPUs
|
|
- Model pooling (keep multiple models loaded)
|
|
- Batch request queueing
|
|
- Metrics and monitoring
|
|
- Auto-scaling based on demand
|