Files
runpod/ARCHITECTURE.md
Sebastian Krüger 9ee626a78e feat: implement Ansible-based process architecture for RunPod
Major architecture overhaul to address RunPod Docker limitations:

Core Infrastructure:
- Add base_service.py: Abstract base class for all AI services
- Add service_manager.py: Process lifecycle management
- Add core/requirements.txt: Core dependencies

Model Services (Standalone Python):
- Add models/vllm/server.py: Qwen 2.5 7B text generation
- Add models/flux/server.py: Flux.1 Schnell image generation
- Add models/musicgen/server.py: MusicGen Medium music generation
- Each service inherits from GPUService base class
- OpenAI-compatible APIs
- Standalone execution support

Ansible Deployment:
- Add playbook.yml: Comprehensive deployment automation
- Add ansible.cfg: Ansible configuration
- Add inventory.yml: Localhost inventory
- Tags: base, python, dependencies, models, tailscale, validate, cleanup

Scripts:
- Add scripts/install.sh: Full installation wrapper
- Add scripts/download-models.sh: Model download wrapper
- Add scripts/start-all.sh: Start orchestrator
- Add scripts/stop-all.sh: Stop all services

Documentation:
- Update ARCHITECTURE.md: Document distributed VPS+GPU architecture

Benefits:
- No Docker: Avoids RunPod CAP_SYS_ADMIN limitations
- Fully reproducible via Ansible
- Extensible: Add models in 3 steps
- Direct Python execution (no container overhead)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-21 15:37:18 +01:00

215 lines
6.5 KiB
Markdown

# RunPod Multi-Modal AI Architecture
**Clean, extensible distributed AI infrastructure spanning VPS and GPU**
## Design Principles
1. **Distributed** - VPS (UI/proxy) + GPU (models) connected via Tailscale
2. **No Docker on GPU** - Direct Python for RunPod compatibility
3. **Extensible** - Adding new models requires minimal code
4. **Maintainable** - Clear structure and separation of concerns
5. **Simple** - One command to start, easy to debug
6. **OpenAI Compatible** - Works with standard AI tools
## Directory Structure
```
runpod/
├── core/ # Core infrastructure
│ ├── base_service.py # Abstract base class for all services
│ ├── service_manager.py # Process lifecycle management
│ └── requirements.txt # Core dependencies
├── model-orchestrator/ # Request orchestration
│ ├── orchestrator.py # Main orchestrator (process-based)
│ ├── models.yaml # Model registry (simple config)
│ └── requirements.txt # Orchestrator dependencies
├── models/ # Model service implementations
│ ├── vllm/ # Text generation
│ │ ├── server.py # vLLM service (inherits base_service)
│ │ └── requirements.txt # vLLM dependencies
│ │
│ ├── flux/ # Image generation
│ │ ├── server.py # Flux service
│ │ └── requirements.txt # Flux dependencies
│ │
│ └── musicgen/ # Music generation
│ ├── server.py # MusicGen service
│ └── requirements.txt # AudioCraft dependencies
├── scripts/ # Deployment & management
│ ├── install.sh # Install all dependencies
│ ├── download-models.sh # Pre-download models
│ ├── start-all.sh # Start orchestrator + services
│ ├── stop-all.sh # Stop all services
│ └── prepare-template.sh # RunPod template preparation
├── systemd/ # Optional systemd services
│ ├── ai-orchestrator.service
│ └── install-services.sh
└── docs/ # Documentation
├── ADDING_MODELS.md # Guide for adding new models
├── DEPLOYMENT.md # Deployment guide
└── RUNPOD_TEMPLATE.md # Template creation guide
```
## Component Responsibilities
### Core (`core/`)
- **base_service.py**: Abstract base class for all model services
- Health check endpoint
- Graceful shutdown
- Logging configuration
- Common utilities
- **service_manager.py**: Process lifecycle management
- Start/stop services
- Health monitoring
- Auto-restart on failure
- Resource cleanup
### Orchestrator (`model-orchestrator/`)
- **orchestrator.py**: Routes requests to appropriate model
- Reads `models.yaml` configuration
- Manages model switching
- Proxies requests to services
- OpenAI-compatible API
- **models.yaml**: Simple model registry
```yaml
models:
model-name:
type: text|image|audio
service_script: path/to/server.py
port: 8001
startup_time: 120
endpoint: /v1/chat/completions
```
### Models (`models/`)
Each model directory contains:
- **server.py**: Service implementation (inherits `BaseService`)
- **requirements.txt**: Model-specific dependencies
Services are standalone - can run independently for testing.
### Scripts (`scripts/`)
- **install.sh**: Install Python packages for all services
- **download-models.sh**: Pre-download models to `/workspace`
- **start-all.sh**: Start orchestrator (which manages model services)
- **stop-all.sh**: Graceful shutdown of all services
- **prepare-template.sh**: RunPod template preparation
## Adding a New Model (3 steps)
### 1. Create Model Service
```python
# models/mymodel/server.py
from core.base_service import BaseService
class MyModelService(BaseService):
def __init__(self):
super().__init__(
name="mymodel",
port=8004
)
async def initialize(self):
"""Load model"""
self.model = load_my_model()
def create_app(self):
"""Define FastAPI routes"""
@self.app.post("/v1/mymodel/generate")
async def generate(request: MyRequest):
return self.model.generate(request.prompt)
if __name__ == "__main__":
service = MyModelService()
service.run()
```
### 2. Add to Registry
```yaml
# model-orchestrator/models.yaml
models:
mymodel:
type: custom
service_script: models/mymodel/server.py
port: 8004
startup_time: 60
endpoint: /v1/mymodel/generate
```
### 3. Add Dependencies
```
# models/mymodel/requirements.txt
transformers==4.36.0
torch==2.1.0
```
That's it! The orchestrator handles everything else.
## Request Flow
```
Client Request
Orchestrator (port 9000)
↓ (determines model from endpoint)
Model Service (port 8001-800X)
Response
```
## Startup Flow
1. Run `scripts/start-all.sh`
2. Orchestrator starts on port 9000
3. Orchestrator reads `models.yaml`
4. On first request:
- Orchestrator starts appropriate model service
- Waits for health check
- Proxies request
5. On subsequent requests:
- If same model: direct proxy
- If different model: stop current, start new
## Benefits
- **Simple**: No Docker complexity, just Python
- **Fast**: No container overhead, direct execution
- **Debuggable**: Standard Python processes, easy to inspect
- **Extensible**: Add models by creating one file + YAML entry
- **Maintainable**: Clear structure, base classes, DRY principles
- **Portable**: Works anywhere Python runs (local, RunPod, other cloud)
## Development Workflow
```bash
# Local development
python3 models/vllm/server.py # Test service directly
python3 model-orchestrator/orchestrator.py # Test orchestrator
# RunPod deployment
./scripts/install.sh # Install dependencies
./scripts/download-models.sh # Pre-download models
./scripts/start-all.sh # Start everything
# Create template
./scripts/prepare-template.sh # Prepare for template save
```
## Future Enhancements
- Load balancing across multiple GPUs
- Model pooling (keep multiple models loaded)
- Batch request queueing
- Metrics and monitoring
- Auto-scaling based on demand