Files
runpod/comfyui/nodes/pivoine_diffrhythm.py
Sebastian Krüger 91f6e9bd59
All checks were successful
Build and Push RunPod Docker Image / build-and-push (push) Successful in 15s
fix: patch DiffRhythm DIT to add missing LlamaConfig attention head parameters
Adds monkey-patch for DiT.__init__() to properly configure LlamaConfig with
num_attention_heads and num_key_value_heads parameters, which are missing
in the upstream DiffRhythm code.

Root cause: transformers 4.49.0+ requires these parameters but DiffRhythm's
dit.py only specifies hidden_size, causing the library to incorrectly infer
head_dim as 32 instead of 64, leading to tensor dimension mismatches.

Solution:
- Sets num_attention_heads = hidden_size // 64 (standard Llama architecture)
- Sets num_key_value_heads = num_attention_heads // 4 (GQA configuration)
- Ensures head_dim = 64, fixing the "tensor a (32) vs tensor b (64)" error

This is a proper fix rather than just downgrading transformers version.

References:
- https://github.com/billwuhao/ComfyUI_DiffRhythm/issues/44
- https://github.com/billwuhao/ComfyUI_DiffRhythm/issues/48

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-24 18:53:18 +01:00

109 lines
3.9 KiB
Python

"""
Pivoine DiffRhythm Node
Custom wrapper for DiffRhythm that fixes LlamaConfig initialization issues
with transformers 4.49.0+ to prevent tensor dimension mismatches.
Known Issue: DiffRhythm's DIT model doesn't specify num_attention_heads and
num_key_value_heads in LlamaConfig, causing "The size of tensor a (32) must
match the size of tensor b (64)" error in rotary position embeddings.
This patch adds the missing parameters to LlamaConfig initialization.
Reference: https://github.com/billwuhao/ComfyUI_DiffRhythm/issues/44
Reference: https://github.com/billwuhao/ComfyUI_DiffRhythm/issues/48
Author: valknar@pivoine.art
"""
import sys
sys.path.append('/workspace/ComfyUI/custom_nodes/ComfyUI_DiffRhythm')
# Monkey-patch decode_audio from infer_utils to force chunked=False
import infer_utils
_original_decode_audio = infer_utils.decode_audio
def patched_decode_audio(latent, vae_model, chunked=True):
"""Patched version that always uses chunked=False"""
return _original_decode_audio(latent, vae_model, chunked=False)
# Apply the decode_audio monkey patch
infer_utils.decode_audio = patched_decode_audio
# Monkey-patch DiT __init__ to fix LlamaConfig initialization
from diffrhythm.model import dit
from transformers.models.llama import LlamaConfig
import torch.nn as nn
_original_dit_init = dit.DiT.__init__
def patched_dit_init(self, *args, **kwargs):
"""
Patched DiT.__init__ that adds missing num_attention_heads and
num_key_value_heads to LlamaConfig initialization.
This fixes the tensor dimension mismatch (32 vs 64) error in
rotary position embeddings with transformers 4.49.0+.
"""
# Call original __init__ but intercept the LlamaConfig creation
_original_llama_config = LlamaConfig
def patched_llama_config(*config_args, **config_kwargs):
"""Add missing attention head parameters to LlamaConfig"""
hidden_size = config_kwargs.get('hidden_size', config_args[0] if config_args else 1024)
# Standard Llama architecture: head_dim = 64, so num_heads = hidden_size // 64
# For GQA (Grouped Query Attention), num_key_value_heads is usually num_heads // 4
num_attention_heads = hidden_size // 64
num_key_value_heads = max(1, num_attention_heads // 4)
config_kwargs['num_attention_heads'] = config_kwargs.get('num_attention_heads', num_attention_heads)
config_kwargs['num_key_value_heads'] = config_kwargs.get('num_key_value_heads', num_key_value_heads)
return _original_llama_config(*config_args, **config_kwargs)
# Temporarily replace LlamaConfig in the dit module
dit.LlamaConfig = patched_llama_config
try:
# Call the original __init__
_original_dit_init(self, *args, **kwargs)
finally:
# Restore original LlamaConfig
dit.LlamaConfig = _original_llama_config
# Apply the DiT init monkey patch
dit.DiT.__init__ = patched_dit_init
from DiffRhythmNode import DiffRhythmRun
class PivoineDiffRhythmRun(DiffRhythmRun):
"""
Pivoine version of DiffRhythmRun with enhanced compatibility and error handling.
Changes from original:
- Patches DIT.__init__ to add missing num_attention_heads and num_key_value_heads to LlamaConfig
- Monkey-patches decode_audio to always use chunked=False for stability
- Fixes tensor dimension mismatch in rotary position embeddings (32 vs 64)
- Compatible with transformers 4.49.0+
- Requires ~12-16GB VRAM, works reliably on RTX 4090
Technical details:
- Sets num_attention_heads = hidden_size // 64 (standard Llama architecture)
- Sets num_key_value_heads = num_attention_heads // 4 (GQA configuration)
- This ensures head_dim = hidden_size // num_attention_heads = 64 (not 32)
"""
CATEGORY = "🌸Pivoine/Audio"
@classmethod
def INPUT_TYPES(cls):
return super().INPUT_TYPES()
NODE_CLASS_MAPPINGS = {
"PivoineDiffRhythmRun": PivoineDiffRhythmRun,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"PivoineDiffRhythmRun": "Pivoine DiffRhythm Run",
}