fix: apply LlamaConfig patch globally at import time
All checks were successful
Build and Push RunPod Docker Image / build-and-push (push) Successful in 14s

Previous approach patched DiT.__init__ at runtime, but models were already
instantiated and cached. This version patches LlamaConfig globally BEFORE
any DiffRhythm imports, ensuring all model instances use the correct config.

Key changes:
- Created PatchedLlamaConfig subclass that auto-calculates attention heads
- Replaced LlamaConfig in transformers.models.llama module at import time
- Patch applies to all LlamaConfig instances, including pre-loaded models

This should finally fix the tensor dimension mismatch error.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
2025-11-24 19:00:29 +01:00
parent 91f6e9bd59
commit f74457b049

View File

@@ -7,7 +7,7 @@ Known Issue: DiffRhythm's DIT model doesn't specify num_attention_heads and
num_key_value_heads in LlamaConfig, causing "The size of tensor a (32) must num_key_value_heads in LlamaConfig, causing "The size of tensor a (32) must
match the size of tensor b (64)" error in rotary position embeddings. match the size of tensor b (64)" error in rotary position embeddings.
This patch adds the missing parameters to LlamaConfig initialization. This patch globally intercepts LlamaConfig at import time.
Reference: https://github.com/billwuhao/ComfyUI_DiffRhythm/issues/44 Reference: https://github.com/billwuhao/ComfyUI_DiffRhythm/issues/44
Reference: https://github.com/billwuhao/ComfyUI_DiffRhythm/issues/48 Reference: https://github.com/billwuhao/ComfyUI_DiffRhythm/issues/48
@@ -18,62 +18,54 @@ Author: valknar@pivoine.art
import sys import sys
sys.path.append('/workspace/ComfyUI/custom_nodes/ComfyUI_DiffRhythm') sys.path.append('/workspace/ComfyUI/custom_nodes/ComfyUI_DiffRhythm')
# Monkey-patch decode_audio from infer_utils to force chunked=False # CRITICAL: Patch LlamaConfig BEFORE any DiffRhythm imports
# This must happen at module import time, not at runtime
from transformers.models.llama import LlamaConfig as _OriginalLlamaConfig
class PatchedLlamaConfig(_OriginalLlamaConfig):
"""
Patched LlamaConfig that automatically adds missing attention head parameters.
Fixes the tensor dimension mismatch (32 vs 64) in DiffRhythm's rotary
position embeddings by ensuring num_attention_heads and num_key_value_heads
are properly set based on hidden_size.
"""
def __init__(self, *args, **kwargs):
# If hidden_size is provided but num_attention_heads is not, calculate it
if 'hidden_size' in kwargs and 'num_attention_heads' not in kwargs:
hidden_size = kwargs['hidden_size']
# Standard Llama architecture: head_dim = 64, so num_heads = hidden_size // 64
kwargs['num_attention_heads'] = hidden_size // 64
# If num_key_value_heads is not provided, use GQA configuration
if 'num_attention_heads' in kwargs and 'num_key_value_heads' not in kwargs:
# For GQA (Grouped Query Attention), typically num_kv_heads = num_heads // 4
kwargs['num_key_value_heads'] = max(1, kwargs['num_attention_heads'] // 4)
# Call original __init__ with patched parameters
super().__init__(*args, **kwargs)
# Replace LlamaConfig in transformers module BEFORE DiffRhythm imports it
import transformers.models.llama
transformers.models.llama.LlamaConfig = PatchedLlamaConfig
# Also replace in modeling_llama module if it's already imported
import transformers.models.llama.modeling_llama
transformers.models.llama.modeling_llama.LlamaConfig = PatchedLlamaConfig
# Now import DiffRhythm modules - they will use our patched LlamaConfig
import infer_utils import infer_utils
# Monkey-patch decode_audio to force chunked=False
_original_decode_audio = infer_utils.decode_audio _original_decode_audio = infer_utils.decode_audio
def patched_decode_audio(latent, vae_model, chunked=True): def patched_decode_audio(latent, vae_model, chunked=True):
"""Patched version that always uses chunked=False""" """Patched version that always uses chunked=False"""
return _original_decode_audio(latent, vae_model, chunked=False) return _original_decode_audio(latent, vae_model, chunked=False)
# Apply the decode_audio monkey patch
infer_utils.decode_audio = patched_decode_audio infer_utils.decode_audio = patched_decode_audio
# Monkey-patch DiT __init__ to fix LlamaConfig initialization # Import DiffRhythm node
from diffrhythm.model import dit
from transformers.models.llama import LlamaConfig
import torch.nn as nn
_original_dit_init = dit.DiT.__init__
def patched_dit_init(self, *args, **kwargs):
"""
Patched DiT.__init__ that adds missing num_attention_heads and
num_key_value_heads to LlamaConfig initialization.
This fixes the tensor dimension mismatch (32 vs 64) error in
rotary position embeddings with transformers 4.49.0+.
"""
# Call original __init__ but intercept the LlamaConfig creation
_original_llama_config = LlamaConfig
def patched_llama_config(*config_args, **config_kwargs):
"""Add missing attention head parameters to LlamaConfig"""
hidden_size = config_kwargs.get('hidden_size', config_args[0] if config_args else 1024)
# Standard Llama architecture: head_dim = 64, so num_heads = hidden_size // 64
# For GQA (Grouped Query Attention), num_key_value_heads is usually num_heads // 4
num_attention_heads = hidden_size // 64
num_key_value_heads = max(1, num_attention_heads // 4)
config_kwargs['num_attention_heads'] = config_kwargs.get('num_attention_heads', num_attention_heads)
config_kwargs['num_key_value_heads'] = config_kwargs.get('num_key_value_heads', num_key_value_heads)
return _original_llama_config(*config_args, **config_kwargs)
# Temporarily replace LlamaConfig in the dit module
dit.LlamaConfig = patched_llama_config
try:
# Call the original __init__
_original_dit_init(self, *args, **kwargs)
finally:
# Restore original LlamaConfig
dit.LlamaConfig = _original_llama_config
# Apply the DiT init monkey patch
dit.DiT.__init__ = patched_dit_init
from DiffRhythmNode import DiffRhythmRun from DiffRhythmNode import DiffRhythmRun
class PivoineDiffRhythmRun(DiffRhythmRun): class PivoineDiffRhythmRun(DiffRhythmRun):
@@ -81,7 +73,7 @@ class PivoineDiffRhythmRun(DiffRhythmRun):
Pivoine version of DiffRhythmRun with enhanced compatibility and error handling. Pivoine version of DiffRhythmRun with enhanced compatibility and error handling.
Changes from original: Changes from original:
- Patches DIT.__init__ to add missing num_attention_heads and num_key_value_heads to LlamaConfig - Globally patches LlamaConfig to add missing num_attention_heads and num_key_value_heads
- Monkey-patches decode_audio to always use chunked=False for stability - Monkey-patches decode_audio to always use chunked=False for stability
- Fixes tensor dimension mismatch in rotary position embeddings (32 vs 64) - Fixes tensor dimension mismatch in rotary position embeddings (32 vs 64)
- Compatible with transformers 4.49.0+ - Compatible with transformers 4.49.0+
@@ -91,6 +83,7 @@ class PivoineDiffRhythmRun(DiffRhythmRun):
- Sets num_attention_heads = hidden_size // 64 (standard Llama architecture) - Sets num_attention_heads = hidden_size // 64 (standard Llama architecture)
- Sets num_key_value_heads = num_attention_heads // 4 (GQA configuration) - Sets num_key_value_heads = num_attention_heads // 4 (GQA configuration)
- This ensures head_dim = hidden_size // num_attention_heads = 64 (not 32) - This ensures head_dim = hidden_size // num_attention_heads = 64 (not 32)
- Patch is applied globally at import time, affecting all LlamaConfig instances
""" """
CATEGORY = "🌸Pivoine/Audio" CATEGORY = "🌸Pivoine/Audio"