All checks were successful
Build and Push RunPod Docker Image / build-and-push (push) Successful in 14s
Previous approach patched DiT.__init__ at runtime, but models were already instantiated and cached. This version patches LlamaConfig globally BEFORE any DiffRhythm imports, ensuring all model instances use the correct config. Key changes: - Created PatchedLlamaConfig subclass that auto-calculates attention heads - Replaced LlamaConfig in transformers.models.llama module at import time - Patch applies to all LlamaConfig instances, including pre-loaded models This should finally fix the tensor dimension mismatch error. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
102 lines
4.0 KiB
Python
102 lines
4.0 KiB
Python
"""
|
|
Pivoine DiffRhythm Node
|
|
Custom wrapper for DiffRhythm that fixes LlamaConfig initialization issues
|
|
with transformers 4.49.0+ to prevent tensor dimension mismatches.
|
|
|
|
Known Issue: DiffRhythm's DIT model doesn't specify num_attention_heads and
|
|
num_key_value_heads in LlamaConfig, causing "The size of tensor a (32) must
|
|
match the size of tensor b (64)" error in rotary position embeddings.
|
|
|
|
This patch globally intercepts LlamaConfig at import time.
|
|
|
|
Reference: https://github.com/billwuhao/ComfyUI_DiffRhythm/issues/44
|
|
Reference: https://github.com/billwuhao/ComfyUI_DiffRhythm/issues/48
|
|
|
|
Author: valknar@pivoine.art
|
|
"""
|
|
|
|
import sys
|
|
sys.path.append('/workspace/ComfyUI/custom_nodes/ComfyUI_DiffRhythm')
|
|
|
|
# CRITICAL: Patch LlamaConfig BEFORE any DiffRhythm imports
|
|
# This must happen at module import time, not at runtime
|
|
from transformers.models.llama import LlamaConfig as _OriginalLlamaConfig
|
|
|
|
class PatchedLlamaConfig(_OriginalLlamaConfig):
|
|
"""
|
|
Patched LlamaConfig that automatically adds missing attention head parameters.
|
|
|
|
Fixes the tensor dimension mismatch (32 vs 64) in DiffRhythm's rotary
|
|
position embeddings by ensuring num_attention_heads and num_key_value_heads
|
|
are properly set based on hidden_size.
|
|
"""
|
|
def __init__(self, *args, **kwargs):
|
|
# If hidden_size is provided but num_attention_heads is not, calculate it
|
|
if 'hidden_size' in kwargs and 'num_attention_heads' not in kwargs:
|
|
hidden_size = kwargs['hidden_size']
|
|
# Standard Llama architecture: head_dim = 64, so num_heads = hidden_size // 64
|
|
kwargs['num_attention_heads'] = hidden_size // 64
|
|
|
|
# If num_key_value_heads is not provided, use GQA configuration
|
|
if 'num_attention_heads' in kwargs and 'num_key_value_heads' not in kwargs:
|
|
# For GQA (Grouped Query Attention), typically num_kv_heads = num_heads // 4
|
|
kwargs['num_key_value_heads'] = max(1, kwargs['num_attention_heads'] // 4)
|
|
|
|
# Call original __init__ with patched parameters
|
|
super().__init__(*args, **kwargs)
|
|
|
|
# Replace LlamaConfig in transformers module BEFORE DiffRhythm imports it
|
|
import transformers.models.llama
|
|
transformers.models.llama.LlamaConfig = PatchedLlamaConfig
|
|
|
|
# Also replace in modeling_llama module if it's already imported
|
|
import transformers.models.llama.modeling_llama
|
|
transformers.models.llama.modeling_llama.LlamaConfig = PatchedLlamaConfig
|
|
|
|
# Now import DiffRhythm modules - they will use our patched LlamaConfig
|
|
import infer_utils
|
|
|
|
# Monkey-patch decode_audio to force chunked=False
|
|
_original_decode_audio = infer_utils.decode_audio
|
|
|
|
def patched_decode_audio(latent, vae_model, chunked=True):
|
|
"""Patched version that always uses chunked=False"""
|
|
return _original_decode_audio(latent, vae_model, chunked=False)
|
|
|
|
infer_utils.decode_audio = patched_decode_audio
|
|
|
|
# Import DiffRhythm node
|
|
from DiffRhythmNode import DiffRhythmRun
|
|
|
|
class PivoineDiffRhythmRun(DiffRhythmRun):
|
|
"""
|
|
Pivoine version of DiffRhythmRun with enhanced compatibility and error handling.
|
|
|
|
Changes from original:
|
|
- Globally patches LlamaConfig to add missing num_attention_heads and num_key_value_heads
|
|
- Monkey-patches decode_audio to always use chunked=False for stability
|
|
- Fixes tensor dimension mismatch in rotary position embeddings (32 vs 64)
|
|
- Compatible with transformers 4.49.0+
|
|
- Requires ~12-16GB VRAM, works reliably on RTX 4090
|
|
|
|
Technical details:
|
|
- Sets num_attention_heads = hidden_size // 64 (standard Llama architecture)
|
|
- Sets num_key_value_heads = num_attention_heads // 4 (GQA configuration)
|
|
- This ensures head_dim = hidden_size // num_attention_heads = 64 (not 32)
|
|
- Patch is applied globally at import time, affecting all LlamaConfig instances
|
|
"""
|
|
|
|
CATEGORY = "🌸Pivoine/Audio"
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return super().INPUT_TYPES()
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"PivoineDiffRhythmRun": PivoineDiffRhythmRun,
|
|
}
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"PivoineDiffRhythmRun": "Pivoine DiffRhythm Run",
|
|
}
|