fix: adjust VRAM for 24K context based on actual usage
All checks were successful
Build and Push RunPod Docker Image / build-and-push (push) Successful in 13s

Based on error output, model uses ~17.5GB (not 15GB estimated).
- Llama: 85% VRAM for 24576 context (3GB KV cache)
- BGE: 6% VRAM (reduced to fit)
- Total: 91%

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
2025-11-30 22:46:34 +01:00
parent 078043e35a
commit f8694653d0
2 changed files with 2 additions and 2 deletions

View File

@@ -2,6 +2,6 @@ model: BAAI/bge-large-en-v1.5
host: "0.0.0.0"
port: 8002
uvicorn-log-level: "info"
gpu-memory-utilization: 0.08
gpu-memory-utilization: 0.06
dtype: float16
task: embed

View File

@@ -2,7 +2,7 @@ model: meta-llama/Llama-3.1-8B-Instruct
host: "0.0.0.0"
port: 8001
uvicorn-log-level: "info"
gpu-memory-utilization: 0.80
gpu-memory-utilization: 0.85
max-model-len: 24576
dtype: auto
enforce-eager: false