Files
llmx/codex-rs/arg0/src/lib.rs
Michael Bolin 517ffd00c6 feat: use the arg0 trick with apply_patch (#2646)
Historically, Codex CLI has treated `apply_patch` (and its sometimes
misspelling, `applypatch`) as a "virtual CLI," intercepting it when it
appears as the first arg to `command` for the `"container.exec",
`"shell"`, or `"local_shell"` tools.

This approach has a known limitation where if, say, the model created a
Python script that runs `apply_patch` and then tried to run the Python
script, we have no insight as to what the model is trying to do and the
Python Script would fail because `apply_patch` was never really on the
`PATH`.

One way to solve this problem is to require users to install an
`apply_patch` executable alongside the `codex` executable (or at least
put it someplace where Codex can discover it). Though to keep Codex CLI
as a standalone executable, we exploit "the arg0 trick" where we create
a temporary directory with an entry named `apply_patch` and prepend that
directory to the `PATH` for the duration of the invocation of Codex.

- On UNIX, `apply_patch` is a symlink to `codex`, which now changes its
behavior to behave like `apply_patch` if arg0 is `apply_patch` (or
`applypatch`)
- On Windows, `apply_patch.bat` is a batch script that runs `codex
--codex-run-as-apply-patch %*`, as Codex also changes its behavior if
the first argument is `--codex-run-as-apply-patch`.
2025-08-24 14:35:51 -07:00

202 lines
7.0 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
use std::future::Future;
use std::path::Path;
use std::path::PathBuf;
use codex_core::CODEX_APPLY_PATCH_ARG1;
#[cfg(unix)]
use std::os::unix::fs::symlink;
use tempfile::TempDir;
const LINUX_SANDBOX_ARG0: &str = "codex-linux-sandbox";
const APPLY_PATCH_ARG0: &str = "apply_patch";
const MISSPELLED_APPLY_PATCH_ARG0: &str = "applypatch";
/// While we want to deploy the Codex CLI as a single executable for simplicity,
/// we also want to expose some of its functionality as distinct CLIs, so we use
/// the "arg0 trick" to determine which CLI to dispatch. This effectively allows
/// us to simulate deploying multiple executables as a single binary on Mac and
/// Linux (but not Windows).
///
/// When the current executable is invoked through the hard-link or alias named
/// `codex-linux-sandbox` we *directly* execute
/// [`codex_linux_sandbox::run_main`] (which never returns). Otherwise we:
///
/// 1. Use [`dotenvy::from_path`] and [`dotenvy::dotenv`] to modify the
/// environment before creating any threads.
/// 2. Construct a Tokio multi-thread runtime.
/// 3. Derive the path to the current executable (so children can re-invoke the
/// sandbox) when running on Linux.
/// 4. Execute the provided async `main_fn` inside that runtime, forwarding any
/// error. Note that `main_fn` receives `codex_linux_sandbox_exe:
/// Option<PathBuf>`, as an argument, which is generally needed as part of
/// constructing [`codex_core::config::Config`].
///
/// This function should be used to wrap any `main()` function in binary crates
/// in this workspace that depends on these helper CLIs.
pub fn arg0_dispatch_or_else<F, Fut>(main_fn: F) -> anyhow::Result<()>
where
F: FnOnce(Option<PathBuf>) -> Fut,
Fut: Future<Output = anyhow::Result<()>>,
{
// Determine if we were invoked via the special alias.
let mut args = std::env::args_os();
let argv0 = args.next().unwrap_or_default();
let exe_name = Path::new(&argv0)
.file_name()
.and_then(|s| s.to_str())
.unwrap_or("");
if exe_name == LINUX_SANDBOX_ARG0 {
// Safety: [`run_main`] never returns.
codex_linux_sandbox::run_main();
} else if exe_name == APPLY_PATCH_ARG0 || exe_name == MISSPELLED_APPLY_PATCH_ARG0 {
codex_apply_patch::main();
}
let argv1 = args.next().unwrap_or_default();
if argv1 == CODEX_APPLY_PATCH_ARG1 {
let patch_arg = args.next().and_then(|s| s.to_str().map(|s| s.to_owned()));
let exit_code = match patch_arg {
Some(patch_arg) => {
let mut stdout = std::io::stdout();
let mut stderr = std::io::stderr();
match codex_apply_patch::apply_patch(&patch_arg, &mut stdout, &mut stderr) {
Ok(()) => 0,
Err(_) => 1,
}
}
None => {
eprintln!("Error: {CODEX_APPLY_PATCH_ARG1} requires a UTF-8 PATCH argument.");
1
}
};
std::process::exit(exit_code);
}
// This modifies the environment, which is not thread-safe, so do this
// before creating any threads/the Tokio runtime.
load_dotenv();
// Retain the TempDir so it exists for the lifetime of the invocation of
// this executable. Admittedly, we could invoke `keep()` on it, but it
// would be nice to avoid leaving temporary directories behind, if possible.
let _path_entry = match prepend_path_entry_for_apply_patch() {
Ok(path_entry) => Some(path_entry),
Err(err) => {
// It is possible that Codex will proceed successfully even if
// updating the PATH fails, so warn the user and move on.
eprintln!("WARNING: proceeding, even though we could not update PATH: {err}");
None
}
};
// Regular invocation create a Tokio runtime and execute the provided
// async entry-point.
let runtime = tokio::runtime::Runtime::new()?;
runtime.block_on(async move {
let codex_linux_sandbox_exe: Option<PathBuf> = if cfg!(target_os = "linux") {
std::env::current_exe().ok()
} else {
None
};
main_fn(codex_linux_sandbox_exe).await
})
}
const ILLEGAL_ENV_VAR_PREFIX: &str = "CODEX_";
/// Load env vars from ~/.codex/.env and `$(pwd)/.env`.
///
/// Security: Do not allow `.env` files to create or modify any variables
/// with names starting with `CODEX_`.
fn load_dotenv() {
if let Ok(codex_home) = codex_core::config::find_codex_home()
&& let Ok(iter) = dotenvy::from_path_iter(codex_home.join(".env"))
{
set_filtered(iter);
}
if let Ok(iter) = dotenvy::dotenv_iter() {
set_filtered(iter);
}
}
/// Helper to set vars from a dotenvy iterator while filtering out `CODEX_` keys.
fn set_filtered<I>(iter: I)
where
I: IntoIterator<Item = Result<(String, String), dotenvy::Error>>,
{
for (key, value) in iter.into_iter().flatten() {
if !key.to_ascii_uppercase().starts_with(ILLEGAL_ENV_VAR_PREFIX) {
// It is safe to call set_var() because our process is
// single-threaded at this point in its execution.
unsafe { std::env::set_var(&key, &value) };
}
}
}
/// Creates a temporary directory with either:
///
/// - UNIX: `apply_patch` symlink to the current executable
/// - WINDOWS: `apply_patch.bat` batch script to invoke the current executable
/// with the "secret" --codex-run-as-apply-patch flag.
///
/// This temporary directory is prepended to the PATH environment variable so
/// that `apply_patch` can be on the PATH without requiring the user to
/// install a separate `apply_patch` executable, simplifying the deployment of
/// Codex CLI.
///
/// IMPORTANT: This function modifies the PATH environment variable, so it MUST
/// be called before multiple threads are spawned.
fn prepend_path_entry_for_apply_patch() -> std::io::Result<TempDir> {
let temp_dir = TempDir::new()?;
let path = temp_dir.path();
for filename in &[APPLY_PATCH_ARG0, MISSPELLED_APPLY_PATCH_ARG0] {
let exe = std::env::current_exe()?;
#[cfg(unix)]
{
let link = path.join(filename);
symlink(&exe, &link)?;
}
#[cfg(windows)]
{
let batch_script = path.join(format!("{filename}.bat"));
std::fs::write(
&batch_script,
format!(
r#"@echo off
"{}" {CODEX_APPLY_PATCH_ARG1} %*
"#,
exe.display()
),
)?;
}
}
#[cfg(unix)]
const PATH_SEPARATOR: &str = ":";
#[cfg(windows)]
const PATH_SEPARATOR: &str = ";";
let path_element = path.display();
let updated_path_env_var = match std::env::var("PATH") {
Ok(existing_path) => {
format!("{path_element}{PATH_SEPARATOR}{existing_path}")
}
Err(_) => {
format!("{path_element}")
}
};
unsafe {
std::env::set_var("PATH", updated_path_env_var);
}
Ok(temp_dir)
}