This release represents a comprehensive transformation of the codebase from Codex to LLMX, enhanced with LiteLLM integration to support 100+ LLM providers through a unified API. ## Major Changes ### Phase 1: Repository & Infrastructure Setup - Established new repository structure and branching strategy - Created comprehensive project documentation (CLAUDE.md, LITELLM-SETUP.md) - Set up development environment and tooling configuration ### Phase 2: Rust Workspace Transformation - Renamed all Rust crates from `codex-*` to `llmx-*` (30+ crates) - Updated package names, binary names, and workspace members - Renamed core modules: codex.rs → llmx.rs, codex_delegate.rs → llmx_delegate.rs - Updated all internal references, imports, and type names - Renamed directories: codex-rs/ → llmx-rs/, codex-backend-openapi-models/ → llmx-backend-openapi-models/ - Fixed all Rust compilation errors after mass rename ### Phase 3: LiteLLM Integration - Integrated LiteLLM for multi-provider LLM support (Anthropic, OpenAI, Azure, Google AI, AWS Bedrock, etc.) - Implemented OpenAI-compatible Chat Completions API support - Added model family detection and provider-specific handling - Updated authentication to support LiteLLM API keys - Renamed environment variables: OPENAI_BASE_URL → LLMX_BASE_URL - Added LLMX_API_KEY for unified authentication - Enhanced error handling for Chat Completions API responses - Implemented fallback mechanisms between Responses API and Chat Completions API ### Phase 4: TypeScript/Node.js Components - Renamed npm package: @codex/codex-cli → @valknar/llmx - Updated TypeScript SDK to use new LLMX APIs and endpoints - Fixed all TypeScript compilation and linting errors - Updated SDK tests to support both API backends - Enhanced mock server to handle multiple API formats - Updated build scripts for cross-platform packaging ### Phase 5: Configuration & Documentation - Updated all configuration files to use LLMX naming - Rewrote README and documentation for LLMX branding - Updated config paths: ~/.codex/ → ~/.llmx/ - Added comprehensive LiteLLM setup guide - Updated all user-facing strings and help text - Created release plan and migration documentation ### Phase 6: Testing & Validation - Fixed all Rust tests for new naming scheme - Updated snapshot tests in TUI (36 frame files) - Fixed authentication storage tests - Updated Chat Completions payload and SSE tests - Fixed SDK tests for new API endpoints - Ensured compatibility with Claude Sonnet 4.5 model - Fixed test environment variables (LLMX_API_KEY, LLMX_BASE_URL) ### Phase 7: Build & Release Pipeline - Updated GitHub Actions workflows for LLMX binary names - Fixed rust-release.yml to reference llmx-rs/ instead of codex-rs/ - Updated CI/CD pipelines for new package names - Made Apple code signing optional in release workflow - Enhanced npm packaging resilience for partial platform builds - Added Windows sandbox support to workspace - Updated dotslash configuration for new binary names ### Phase 8: Final Polish - Renamed all assets (.github images, labels, templates) - Updated VSCode and DevContainer configurations - Fixed all clippy warnings and formatting issues - Applied cargo fmt and prettier formatting across codebase - Updated issue templates and pull request templates - Fixed all remaining UI text references ## Technical Details **Breaking Changes:** - Binary name changed from `codex` to `llmx` - Config directory changed from `~/.codex/` to `~/.llmx/` - Environment variables renamed (CODEX_* → LLMX_*) - npm package renamed to `@valknar/llmx` **New Features:** - Support for 100+ LLM providers via LiteLLM - Unified authentication with LLMX_API_KEY - Enhanced model provider detection and handling - Improved error handling and fallback mechanisms **Files Changed:** - 578 files modified across Rust, TypeScript, and documentation - 30+ Rust crates renamed and updated - Complete rebrand of UI, CLI, and documentation - All tests updated and passing **Dependencies:** - Updated Cargo.lock with new package names - Updated npm dependencies in llmx-cli - Enhanced OpenAPI models for LLMX backend This release establishes LLMX as a standalone project with comprehensive LiteLLM integration, maintaining full backward compatibility with existing functionality while opening support for a wide ecosystem of LLM providers. 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com> Co-Authored-By: Sebastian Krüger <support@pivoine.art>
162 lines
5.1 KiB
Rust
162 lines
5.1 KiB
Rust
use std::fmt;
|
|
|
|
use anyhow::Context;
|
|
use anyhow::Error as AnyhowError;
|
|
use thiserror::Error;
|
|
use tiktoken_rs::CoreBPE;
|
|
|
|
/// Supported local encodings.
|
|
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
|
|
pub enum EncodingKind {
|
|
O200kBase,
|
|
Cl100kBase,
|
|
}
|
|
|
|
impl fmt::Display for EncodingKind {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
match self {
|
|
Self::O200kBase => f.write_str("o200k_base"),
|
|
Self::Cl100kBase => f.write_str("cl100k_base"),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Tokenizer error type.
|
|
#[derive(Debug, Error)]
|
|
pub enum TokenizerError {
|
|
#[error("failed to load encoding {kind}")]
|
|
LoadEncoding {
|
|
kind: EncodingKind,
|
|
#[source]
|
|
source: AnyhowError,
|
|
},
|
|
#[error("failed to decode tokens")]
|
|
Decode {
|
|
#[source]
|
|
source: AnyhowError,
|
|
},
|
|
}
|
|
|
|
/// Thin wrapper around a `tiktoken_rs::CoreBPE` tokenizer.
|
|
#[derive(Clone)]
|
|
pub struct Tokenizer {
|
|
inner: CoreBPE,
|
|
}
|
|
|
|
impl Tokenizer {
|
|
/// Build a tokenizer for a specific encoding.
|
|
pub fn new(kind: EncodingKind) -> Result<Self, TokenizerError> {
|
|
let loader: fn() -> anyhow::Result<CoreBPE> = match kind {
|
|
EncodingKind::O200kBase => tiktoken_rs::o200k_base,
|
|
EncodingKind::Cl100kBase => tiktoken_rs::cl100k_base,
|
|
};
|
|
|
|
let inner = loader().map_err(|source| TokenizerError::LoadEncoding { kind, source })?;
|
|
Ok(Self { inner })
|
|
}
|
|
|
|
/// Default to `O200kBase`
|
|
pub fn try_default() -> Result<Self, TokenizerError> {
|
|
Self::new(EncodingKind::O200kBase)
|
|
}
|
|
|
|
/// Build a tokenizer using an `OpenAI` model name (maps to an encoding).
|
|
/// Falls back to the `O200kBase` encoding when the model is unknown.
|
|
pub fn for_model(model: &str) -> Result<Self, TokenizerError> {
|
|
match tiktoken_rs::get_bpe_from_model(model) {
|
|
Ok(inner) => Ok(Self { inner }),
|
|
Err(model_error) => {
|
|
let inner = tiktoken_rs::o200k_base()
|
|
.with_context(|| {
|
|
format!("fallback after model lookup failure for {model}: {model_error}")
|
|
})
|
|
.map_err(|source| TokenizerError::LoadEncoding {
|
|
kind: EncodingKind::O200kBase,
|
|
source,
|
|
})?;
|
|
Ok(Self { inner })
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Encode text to token IDs. If `with_special_tokens` is true, special
|
|
/// tokens are allowed and may appear in the result.
|
|
#[must_use]
|
|
pub fn encode(&self, text: &str, with_special_tokens: bool) -> Vec<i32> {
|
|
let raw = if with_special_tokens {
|
|
self.inner.encode_with_special_tokens(text)
|
|
} else {
|
|
self.inner.encode_ordinary(text)
|
|
};
|
|
raw.into_iter().map(|t| t as i32).collect()
|
|
}
|
|
|
|
/// Count tokens in `text` as a signed integer.
|
|
#[must_use]
|
|
pub fn count(&self, text: &str) -> i64 {
|
|
// Signed length to satisfy our style preference.
|
|
i64::try_from(self.inner.encode_ordinary(text).len()).unwrap_or(i64::MAX)
|
|
}
|
|
|
|
/// Decode token IDs back to text.
|
|
pub fn decode(&self, tokens: &[i32]) -> Result<String, TokenizerError> {
|
|
let raw: Vec<u32> = tokens.iter().map(|t| *t as u32).collect();
|
|
self.inner
|
|
.decode(raw)
|
|
.map_err(|source| TokenizerError::Decode { source })
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
use pretty_assertions::assert_eq;
|
|
|
|
#[test]
|
|
fn cl100k_base_roundtrip_simple() -> Result<(), TokenizerError> {
|
|
let tok = Tokenizer::new(EncodingKind::Cl100kBase)?;
|
|
let s = "hello world";
|
|
let ids = tok.encode(s, false);
|
|
// Stable expectation for cl100k_base
|
|
assert_eq!(ids, vec![15339, 1917]);
|
|
let back = tok.decode(&ids)?;
|
|
assert_eq!(back, s);
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn preserves_whitespace_and_special_tokens_flag() -> Result<(), TokenizerError> {
|
|
let tok = Tokenizer::new(EncodingKind::Cl100kBase)?;
|
|
let s = "This has multiple spaces";
|
|
let ids_no_special = tok.encode(s, false);
|
|
let round = tok.decode(&ids_no_special)?;
|
|
assert_eq!(round, s);
|
|
|
|
// With special tokens allowed, result may be identical for normal text,
|
|
// but the API should still function.
|
|
let ids_with_special = tok.encode(s, true);
|
|
let round2 = tok.decode(&ids_with_special)?;
|
|
assert_eq!(round2, s);
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn model_mapping_builds_tokenizer() -> Result<(), TokenizerError> {
|
|
// Choose a long-standing model alias that maps to cl100k_base.
|
|
let tok = Tokenizer::for_model("gpt-5")?;
|
|
let ids = tok.encode("ok", false);
|
|
let back = tok.decode(&ids)?;
|
|
assert_eq!(back, "ok");
|
|
Ok(())
|
|
}
|
|
|
|
#[test]
|
|
fn unknown_model_defaults_to_o200k_base() -> Result<(), TokenizerError> {
|
|
let fallback = Tokenizer::new(EncodingKind::O200kBase)?;
|
|
let tok = Tokenizer::for_model("does-not-exist")?;
|
|
let text = "fallback please";
|
|
assert_eq!(tok.encode(text, false), fallback.encode(text, false));
|
|
Ok(())
|
|
}
|
|
}
|