Files
llmx/llmx-rs/utils/tokenizer/src/lib.rs
Sebastian Krüger 3c7efc58c8 feat: Complete LLMX v0.1.0 - Rebrand from Codex with LiteLLM Integration
This release represents a comprehensive transformation of the codebase from Codex to LLMX,
enhanced with LiteLLM integration to support 100+ LLM providers through a unified API.

## Major Changes

### Phase 1: Repository & Infrastructure Setup
- Established new repository structure and branching strategy
- Created comprehensive project documentation (CLAUDE.md, LITELLM-SETUP.md)
- Set up development environment and tooling configuration

### Phase 2: Rust Workspace Transformation
- Renamed all Rust crates from `codex-*` to `llmx-*` (30+ crates)
- Updated package names, binary names, and workspace members
- Renamed core modules: codex.rs → llmx.rs, codex_delegate.rs → llmx_delegate.rs
- Updated all internal references, imports, and type names
- Renamed directories: codex-rs/ → llmx-rs/, codex-backend-openapi-models/ → llmx-backend-openapi-models/
- Fixed all Rust compilation errors after mass rename

### Phase 3: LiteLLM Integration
- Integrated LiteLLM for multi-provider LLM support (Anthropic, OpenAI, Azure, Google AI, AWS Bedrock, etc.)
- Implemented OpenAI-compatible Chat Completions API support
- Added model family detection and provider-specific handling
- Updated authentication to support LiteLLM API keys
- Renamed environment variables: OPENAI_BASE_URL → LLMX_BASE_URL
- Added LLMX_API_KEY for unified authentication
- Enhanced error handling for Chat Completions API responses
- Implemented fallback mechanisms between Responses API and Chat Completions API

### Phase 4: TypeScript/Node.js Components
- Renamed npm package: @codex/codex-cli → @valknar/llmx
- Updated TypeScript SDK to use new LLMX APIs and endpoints
- Fixed all TypeScript compilation and linting errors
- Updated SDK tests to support both API backends
- Enhanced mock server to handle multiple API formats
- Updated build scripts for cross-platform packaging

### Phase 5: Configuration & Documentation
- Updated all configuration files to use LLMX naming
- Rewrote README and documentation for LLMX branding
- Updated config paths: ~/.codex/ → ~/.llmx/
- Added comprehensive LiteLLM setup guide
- Updated all user-facing strings and help text
- Created release plan and migration documentation

### Phase 6: Testing & Validation
- Fixed all Rust tests for new naming scheme
- Updated snapshot tests in TUI (36 frame files)
- Fixed authentication storage tests
- Updated Chat Completions payload and SSE tests
- Fixed SDK tests for new API endpoints
- Ensured compatibility with Claude Sonnet 4.5 model
- Fixed test environment variables (LLMX_API_KEY, LLMX_BASE_URL)

### Phase 7: Build & Release Pipeline
- Updated GitHub Actions workflows for LLMX binary names
- Fixed rust-release.yml to reference llmx-rs/ instead of codex-rs/
- Updated CI/CD pipelines for new package names
- Made Apple code signing optional in release workflow
- Enhanced npm packaging resilience for partial platform builds
- Added Windows sandbox support to workspace
- Updated dotslash configuration for new binary names

### Phase 8: Final Polish
- Renamed all assets (.github images, labels, templates)
- Updated VSCode and DevContainer configurations
- Fixed all clippy warnings and formatting issues
- Applied cargo fmt and prettier formatting across codebase
- Updated issue templates and pull request templates
- Fixed all remaining UI text references

## Technical Details

**Breaking Changes:**
- Binary name changed from `codex` to `llmx`
- Config directory changed from `~/.codex/` to `~/.llmx/`
- Environment variables renamed (CODEX_* → LLMX_*)
- npm package renamed to `@valknar/llmx`

**New Features:**
- Support for 100+ LLM providers via LiteLLM
- Unified authentication with LLMX_API_KEY
- Enhanced model provider detection and handling
- Improved error handling and fallback mechanisms

**Files Changed:**
- 578 files modified across Rust, TypeScript, and documentation
- 30+ Rust crates renamed and updated
- Complete rebrand of UI, CLI, and documentation
- All tests updated and passing

**Dependencies:**
- Updated Cargo.lock with new package names
- Updated npm dependencies in llmx-cli
- Enhanced OpenAPI models for LLMX backend

This release establishes LLMX as a standalone project with comprehensive LiteLLM
integration, maintaining full backward compatibility with existing functionality
while opening support for a wide ecosystem of LLM providers.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
Co-Authored-By: Sebastian Krüger <support@pivoine.art>
2025-11-12 20:40:44 +01:00

162 lines
5.1 KiB
Rust

use std::fmt;
use anyhow::Context;
use anyhow::Error as AnyhowError;
use thiserror::Error;
use tiktoken_rs::CoreBPE;
/// Supported local encodings.
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
pub enum EncodingKind {
O200kBase,
Cl100kBase,
}
impl fmt::Display for EncodingKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::O200kBase => f.write_str("o200k_base"),
Self::Cl100kBase => f.write_str("cl100k_base"),
}
}
}
/// Tokenizer error type.
#[derive(Debug, Error)]
pub enum TokenizerError {
#[error("failed to load encoding {kind}")]
LoadEncoding {
kind: EncodingKind,
#[source]
source: AnyhowError,
},
#[error("failed to decode tokens")]
Decode {
#[source]
source: AnyhowError,
},
}
/// Thin wrapper around a `tiktoken_rs::CoreBPE` tokenizer.
#[derive(Clone)]
pub struct Tokenizer {
inner: CoreBPE,
}
impl Tokenizer {
/// Build a tokenizer for a specific encoding.
pub fn new(kind: EncodingKind) -> Result<Self, TokenizerError> {
let loader: fn() -> anyhow::Result<CoreBPE> = match kind {
EncodingKind::O200kBase => tiktoken_rs::o200k_base,
EncodingKind::Cl100kBase => tiktoken_rs::cl100k_base,
};
let inner = loader().map_err(|source| TokenizerError::LoadEncoding { kind, source })?;
Ok(Self { inner })
}
/// Default to `O200kBase`
pub fn try_default() -> Result<Self, TokenizerError> {
Self::new(EncodingKind::O200kBase)
}
/// Build a tokenizer using an `OpenAI` model name (maps to an encoding).
/// Falls back to the `O200kBase` encoding when the model is unknown.
pub fn for_model(model: &str) -> Result<Self, TokenizerError> {
match tiktoken_rs::get_bpe_from_model(model) {
Ok(inner) => Ok(Self { inner }),
Err(model_error) => {
let inner = tiktoken_rs::o200k_base()
.with_context(|| {
format!("fallback after model lookup failure for {model}: {model_error}")
})
.map_err(|source| TokenizerError::LoadEncoding {
kind: EncodingKind::O200kBase,
source,
})?;
Ok(Self { inner })
}
}
}
/// Encode text to token IDs. If `with_special_tokens` is true, special
/// tokens are allowed and may appear in the result.
#[must_use]
pub fn encode(&self, text: &str, with_special_tokens: bool) -> Vec<i32> {
let raw = if with_special_tokens {
self.inner.encode_with_special_tokens(text)
} else {
self.inner.encode_ordinary(text)
};
raw.into_iter().map(|t| t as i32).collect()
}
/// Count tokens in `text` as a signed integer.
#[must_use]
pub fn count(&self, text: &str) -> i64 {
// Signed length to satisfy our style preference.
i64::try_from(self.inner.encode_ordinary(text).len()).unwrap_or(i64::MAX)
}
/// Decode token IDs back to text.
pub fn decode(&self, tokens: &[i32]) -> Result<String, TokenizerError> {
let raw: Vec<u32> = tokens.iter().map(|t| *t as u32).collect();
self.inner
.decode(raw)
.map_err(|source| TokenizerError::Decode { source })
}
}
#[cfg(test)]
mod tests {
use super::*;
use pretty_assertions::assert_eq;
#[test]
fn cl100k_base_roundtrip_simple() -> Result<(), TokenizerError> {
let tok = Tokenizer::new(EncodingKind::Cl100kBase)?;
let s = "hello world";
let ids = tok.encode(s, false);
// Stable expectation for cl100k_base
assert_eq!(ids, vec![15339, 1917]);
let back = tok.decode(&ids)?;
assert_eq!(back, s);
Ok(())
}
#[test]
fn preserves_whitespace_and_special_tokens_flag() -> Result<(), TokenizerError> {
let tok = Tokenizer::new(EncodingKind::Cl100kBase)?;
let s = "This has multiple spaces";
let ids_no_special = tok.encode(s, false);
let round = tok.decode(&ids_no_special)?;
assert_eq!(round, s);
// With special tokens allowed, result may be identical for normal text,
// but the API should still function.
let ids_with_special = tok.encode(s, true);
let round2 = tok.decode(&ids_with_special)?;
assert_eq!(round2, s);
Ok(())
}
#[test]
fn model_mapping_builds_tokenizer() -> Result<(), TokenizerError> {
// Choose a long-standing model alias that maps to cl100k_base.
let tok = Tokenizer::for_model("gpt-5")?;
let ids = tok.encode("ok", false);
let back = tok.decode(&ids)?;
assert_eq!(back, "ok");
Ok(())
}
#[test]
fn unknown_model_defaults_to_o200k_base() -> Result<(), TokenizerError> {
let fallback = Tokenizer::new(EncodingKind::O200kBase)?;
let tok = Tokenizer::for_model("does-not-exist")?;
let text = "fallback please";
assert_eq!(tok.encode(text, false), fallback.encode(text, false));
Ok(())
}
}