Files
llmx/codex-rs/core/src/exec.rs
Michael Bolin 2ecca79663 fix: run python_multiprocessing_lock_works integration test on Mac and Linux (#2318)
The high-order bit on this PR is that it makes it so `sandbox.rs` tests
both Mac and Linux, as we introduce a general
`spawn_command_under_sandbox()` function with platform-specific
implementations for testing.

An important, and interesting, discovery in porting the test to Linux is
that (for reasons cited in the code comments), `/dev/shm` has to be
added to `writable_roots` on Linux in order for `multiprocessing.Lock`
to work there. Granting write access to `/dev/shm` comes with some
degree of risk, so we do not make this the default for Codex CLI.

Piggybacking on top of #2317, this moves the
`python_multiprocessing_lock_works` test yet again, moving
`codex-rs/core/tests/sandbox.rs` to `codex-rs/exec/tests/sandbox.rs`
because in `codex-rs/exec/tests` we can use `cargo_bin()` like so:

```
let codex_linux_sandbox_exe = assert_cmd::cargo::cargo_bin("codex-exec");
```

which is necessary so we can use `codex_linux_sandbox_exe` and therefore
`spawn_command_under_linux_sandbox` in an integration test.

This also moves `spawn_command_under_linux_sandbox()` out of `exec.rs`
and into `landlock.rs`, which makes things more consistent with
`seatbelt.rs` in `codex-core`.

For reference, https://github.com/openai/codex/pull/1808 is the PR that
made the change to Seatbelt to get this test to pass on Mac.
2025-08-14 15:47:48 -07:00

400 lines
12 KiB
Rust

#[cfg(unix)]
use std::os::unix::process::ExitStatusExt;
use std::collections::HashMap;
use std::io;
use std::path::PathBuf;
use std::process::ExitStatus;
use std::time::Duration;
use std::time::Instant;
use async_channel::Sender;
use tokio::io::AsyncRead;
use tokio::io::AsyncReadExt;
use tokio::io::BufReader;
use tokio::process::Child;
use crate::error::CodexErr;
use crate::error::Result;
use crate::error::SandboxErr;
use crate::landlock::spawn_command_under_linux_sandbox;
use crate::protocol::Event;
use crate::protocol::EventMsg;
use crate::protocol::ExecCommandOutputDeltaEvent;
use crate::protocol::ExecOutputStream;
use crate::protocol::SandboxPolicy;
use crate::seatbelt::spawn_command_under_seatbelt;
use crate::spawn::StdioPolicy;
use crate::spawn::spawn_child_async;
use serde_bytes::ByteBuf;
// Maximum we send for each stream, which is either:
// - 10KiB OR
// - 256 lines
const MAX_STREAM_OUTPUT: usize = 10 * 1024;
const MAX_STREAM_OUTPUT_LINES: usize = 256;
const DEFAULT_TIMEOUT_MS: u64 = 10_000;
// Hardcode these since it does not seem worth including the libc crate just
// for these.
const SIGKILL_CODE: i32 = 9;
const TIMEOUT_CODE: i32 = 64;
#[derive(Debug, Clone)]
pub struct ExecParams {
pub command: Vec<String>,
pub cwd: PathBuf,
pub timeout_ms: Option<u64>,
pub env: HashMap<String, String>,
pub with_escalated_permissions: Option<bool>,
pub justification: Option<String>,
}
impl ExecParams {
pub fn timeout_duration(&self) -> Duration {
Duration::from_millis(self.timeout_ms.unwrap_or(DEFAULT_TIMEOUT_MS))
}
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum SandboxType {
None,
/// Only available on macOS.
MacosSeatbelt,
/// Only available on Linux.
LinuxSeccomp,
}
#[derive(Clone)]
pub struct StdoutStream {
pub sub_id: String,
pub call_id: String,
pub tx_event: Sender<Event>,
}
pub async fn process_exec_tool_call(
params: ExecParams,
sandbox_type: SandboxType,
sandbox_policy: &SandboxPolicy,
codex_linux_sandbox_exe: &Option<PathBuf>,
stdout_stream: Option<StdoutStream>,
) -> Result<ExecToolCallOutput> {
let start = Instant::now();
let raw_output_result: std::result::Result<RawExecToolCallOutput, CodexErr> = match sandbox_type
{
SandboxType::None => exec(params, sandbox_policy, stdout_stream.clone()).await,
SandboxType::MacosSeatbelt => {
let timeout = params.timeout_duration();
let ExecParams {
command, cwd, env, ..
} = params;
let child = spawn_command_under_seatbelt(
command,
sandbox_policy,
cwd,
StdioPolicy::RedirectForShellTool,
env,
)
.await?;
consume_truncated_output(child, timeout, stdout_stream.clone()).await
}
SandboxType::LinuxSeccomp => {
let timeout = params.timeout_duration();
let ExecParams {
command, cwd, env, ..
} = params;
let codex_linux_sandbox_exe = codex_linux_sandbox_exe
.as_ref()
.ok_or(CodexErr::LandlockSandboxExecutableNotProvided)?;
let child = spawn_command_under_linux_sandbox(
codex_linux_sandbox_exe,
command,
sandbox_policy,
cwd,
StdioPolicy::RedirectForShellTool,
env,
)
.await?;
consume_truncated_output(child, timeout, stdout_stream).await
}
};
let duration = start.elapsed();
match raw_output_result {
Ok(raw_output) => {
let stdout = raw_output.stdout.from_utf8_lossy();
let stderr = raw_output.stderr.from_utf8_lossy();
#[cfg(target_family = "unix")]
match raw_output.exit_status.signal() {
Some(TIMEOUT_CODE) => return Err(CodexErr::Sandbox(SandboxErr::Timeout)),
Some(signal) => {
return Err(CodexErr::Sandbox(SandboxErr::Signal(signal)));
}
None => {}
}
let exit_code = raw_output.exit_status.code().unwrap_or(-1);
if exit_code != 0 && is_likely_sandbox_denied(sandbox_type, exit_code) {
return Err(CodexErr::Sandbox(SandboxErr::Denied(
exit_code,
stdout.text,
stderr.text,
)));
}
Ok(ExecToolCallOutput {
exit_code,
stdout,
stderr,
duration,
})
}
Err(err) => {
tracing::error!("exec error: {err}");
Err(err)
}
}
}
/// We don't have a fully deterministic way to tell if our command failed
/// because of the sandbox - a command in the user's zshrc file might hit an
/// error, but the command itself might fail or succeed for other reasons.
/// For now, we conservatively check for 'command not found' (exit code 127),
/// and can add additional cases as necessary.
fn is_likely_sandbox_denied(sandbox_type: SandboxType, exit_code: i32) -> bool {
if sandbox_type == SandboxType::None {
return false;
}
// Quick rejects: well-known non-sandbox shell exit codes
// 127: command not found, 2: misuse of shell builtins
if exit_code == 127 {
return false;
}
// For all other cases, we assume the sandbox is the cause
true
}
#[derive(Debug)]
pub struct StreamOutput<T> {
pub text: T,
pub truncated_after_lines: Option<u32>,
}
#[derive(Debug)]
pub struct RawExecToolCallOutput {
pub exit_status: ExitStatus,
pub stdout: StreamOutput<Vec<u8>>,
pub stderr: StreamOutput<Vec<u8>>,
}
impl StreamOutput<String> {
pub fn new(text: String) -> Self {
Self {
text,
truncated_after_lines: None,
}
}
}
impl StreamOutput<Vec<u8>> {
pub fn from_utf8_lossy(&self) -> StreamOutput<String> {
StreamOutput {
text: String::from_utf8_lossy(&self.text).to_string(),
truncated_after_lines: self.truncated_after_lines,
}
}
}
#[derive(Debug)]
pub struct ExecToolCallOutput {
pub exit_code: i32,
pub stdout: StreamOutput<String>,
pub stderr: StreamOutput<String>,
pub duration: Duration,
}
async fn exec(
params: ExecParams,
sandbox_policy: &SandboxPolicy,
stdout_stream: Option<StdoutStream>,
) -> Result<RawExecToolCallOutput> {
let timeout = params.timeout_duration();
let ExecParams {
command, cwd, env, ..
} = params;
let (program, args) = command.split_first().ok_or_else(|| {
CodexErr::Io(io::Error::new(
io::ErrorKind::InvalidInput,
"command args are empty",
))
})?;
let arg0 = None;
let child = spawn_child_async(
PathBuf::from(program),
args.into(),
arg0,
cwd,
sandbox_policy,
StdioPolicy::RedirectForShellTool,
env,
)
.await?;
consume_truncated_output(child, timeout, stdout_stream).await
}
/// Consumes the output of a child process, truncating it so it is suitable for
/// use as the output of a `shell` tool call. Also enforces specified timeout.
pub(crate) async fn consume_truncated_output(
mut child: Child,
timeout: Duration,
stdout_stream: Option<StdoutStream>,
) -> Result<RawExecToolCallOutput> {
// Both stdout and stderr were configured with `Stdio::piped()`
// above, therefore `take()` should normally return `Some`. If it doesn't
// we treat it as an exceptional I/O error
let stdout_reader = child.stdout.take().ok_or_else(|| {
CodexErr::Io(io::Error::other(
"stdout pipe was unexpectedly not available",
))
})?;
let stderr_reader = child.stderr.take().ok_or_else(|| {
CodexErr::Io(io::Error::other(
"stderr pipe was unexpectedly not available",
))
})?;
let stdout_handle = tokio::spawn(read_capped(
BufReader::new(stdout_reader),
MAX_STREAM_OUTPUT,
MAX_STREAM_OUTPUT_LINES,
stdout_stream.clone(),
false,
));
let stderr_handle = tokio::spawn(read_capped(
BufReader::new(stderr_reader),
MAX_STREAM_OUTPUT,
MAX_STREAM_OUTPUT_LINES,
stdout_stream.clone(),
true,
));
let exit_status = tokio::select! {
result = tokio::time::timeout(timeout, child.wait()) => {
match result {
Ok(Ok(exit_status)) => exit_status,
Ok(e) => e?,
Err(_) => {
// timeout
child.start_kill()?;
// Debatable whether `child.wait().await` should be called here.
synthetic_exit_status(128 + TIMEOUT_CODE)
}
}
}
_ = tokio::signal::ctrl_c() => {
child.start_kill()?;
synthetic_exit_status(128 + SIGKILL_CODE)
}
};
let stdout = stdout_handle.await??;
let stderr = stderr_handle.await??;
Ok(RawExecToolCallOutput {
exit_status,
stdout,
stderr,
})
}
async fn read_capped<R: AsyncRead + Unpin + Send + 'static>(
mut reader: R,
max_output: usize,
max_lines: usize,
stream: Option<StdoutStream>,
is_stderr: bool,
) -> io::Result<StreamOutput<Vec<u8>>> {
let mut buf = Vec::with_capacity(max_output.min(8 * 1024));
let mut tmp = [0u8; 8192];
let mut remaining_bytes = max_output;
let mut remaining_lines = max_lines;
loop {
let n = reader.read(&mut tmp).await?;
if n == 0 {
break;
}
if let Some(stream) = &stream {
let chunk = tmp[..n].to_vec();
let msg = EventMsg::ExecCommandOutputDelta(ExecCommandOutputDeltaEvent {
call_id: stream.call_id.clone(),
stream: if is_stderr {
ExecOutputStream::Stderr
} else {
ExecOutputStream::Stdout
},
chunk: ByteBuf::from(chunk),
});
let event = Event {
id: stream.sub_id.clone(),
msg,
};
#[allow(clippy::let_unit_value)]
let _ = stream.tx_event.send(event).await;
}
// Copy into the buffer only while we still have byte and line budget.
if remaining_bytes > 0 && remaining_lines > 0 {
let mut copy_len = 0;
for &b in &tmp[..n] {
if remaining_bytes == 0 || remaining_lines == 0 {
break;
}
copy_len += 1;
remaining_bytes -= 1;
if b == b'\n' {
remaining_lines -= 1;
}
}
buf.extend_from_slice(&tmp[..copy_len]);
}
// Continue reading to EOF to avoid back-pressure, but discard once caps are hit.
}
let truncated = remaining_lines == 0 || remaining_bytes == 0;
Ok(StreamOutput {
text: buf,
truncated_after_lines: if truncated {
Some((max_lines - remaining_lines) as u32)
} else {
None
},
})
}
#[cfg(unix)]
fn synthetic_exit_status(code: i32) -> ExitStatus {
use std::os::unix::process::ExitStatusExt;
std::process::ExitStatus::from_raw(code)
}
#[cfg(windows)]
fn synthetic_exit_status(code: i32) -> ExitStatus {
use std::os::windows::process::ExitStatusExt;
#[expect(clippy::unwrap_used)]
std::process::ExitStatus::from_raw(code.try_into().unwrap())
}