**Summary**
- Adds `model_verbosity` config (values: low, medium, high).
- Sends `text.verbosity` only for GPT‑5 family models via the Responses
API.
- Updates docs and adds serialization tests.
**Motivation**
- GPT‑5 introduces a verbosity control to steer output length/detail
without pro
mpt surgery.
- Exposing it as a config knob keeps prompts stable and makes behavior
explicit
and repeatable.
**Changes**
- Config:
- Added `Verbosity` enum (low|medium|high).
- Added optional `model_verbosity` to `ConfigToml`, `Config`, and
`ConfigProfi
le`.
- Request wiring:
- Extended `ResponsesApiRequest` with optional `text` object.
- Populates `text.verbosity` only when model family is `gpt-5`; omitted
otherw
ise.
- Tests:
- Verifies `text.verbosity` serializes when set and is omitted when not
set.
- Docs:
- Added “GPT‑5 Verbosity” section in `codex-rs/README.md`.
- Added `model_verbosity` section to `codex-rs/config.md`.
**Usage**
- In `~/.codex/config.toml`:
- `model = "gpt-5"`
- `model_verbosity = "low"` (or `"medium"` default, `"high"`)
- CLI override example:
- `codex -c model="gpt-5" -c model_verbosity="high"`
**API Impact**
- Requests to GPT‑5 via Responses API include: `text: { verbosity:
"low|medium|h
igh" }` when configured.
- For legacy models or Chat Completions providers, `text` is omitted.
**Backward Compatibility**
- Default behavior unchanged when `model_verbosity` is not set (server
default “
medium”).
**Testing**
- Added unit tests for serialization/omission of `text.verbosity`.
- Ran `cargo fmt` and `cargo test --all-features` (all green).
**Docs**
- `README.md`: new “GPT‑5 Verbosity” note under Config with example.
- `config.md`: new `model_verbosity` section.
**Out of Scope**
- No changes to temperature/top_p or other GPT‑5 parameters.
- No changes to Chat Completions wiring.
**Risks / Notes**
- If OpenAI changes the wire shape for verbosity, we may need to update
`Respons
esApiRequest`.
- Behavior gated to `gpt-5` model family to avoid unexpected effects
elsewhere.
**Checklist**
- [x] Code gated to GPT‑5 family only
- [x] Docs updated (`README.md`, `config.md`)
- [x] Tests added and passing
- [x] Formatting applied
Release note: Add `model_verbosity` config to control GPT‑5 output verbosity via the Responses API (low|medium|high).
255 lines
7.8 KiB
Rust
255 lines
7.8 KiB
Rust
use crate::config_types::Verbosity as VerbosityConfig;
|
|
use crate::error::Result;
|
|
use crate::model_family::ModelFamily;
|
|
use crate::models::ContentItem;
|
|
use crate::models::ResponseItem;
|
|
use crate::openai_tools::OpenAiTool;
|
|
use crate::protocol::TokenUsage;
|
|
use codex_apply_patch::APPLY_PATCH_TOOL_INSTRUCTIONS;
|
|
use codex_protocol::config_types::ReasoningEffort as ReasoningEffortConfig;
|
|
use codex_protocol::config_types::ReasoningSummary as ReasoningSummaryConfig;
|
|
use futures::Stream;
|
|
use serde::Serialize;
|
|
use std::borrow::Cow;
|
|
use std::pin::Pin;
|
|
use std::task::Context;
|
|
use std::task::Poll;
|
|
use tokio::sync::mpsc;
|
|
|
|
/// The `instructions` field in the payload sent to a model should always start
|
|
/// with this content.
|
|
const BASE_INSTRUCTIONS: &str = include_str!("../prompt.md");
|
|
|
|
/// wraps user instructions message in a tag for the model to parse more easily.
|
|
const USER_INSTRUCTIONS_START: &str = "<user_instructions>\n\n";
|
|
const USER_INSTRUCTIONS_END: &str = "\n\n</user_instructions>";
|
|
|
|
/// API request payload for a single model turn
|
|
#[derive(Default, Debug, Clone)]
|
|
pub struct Prompt {
|
|
/// Conversation context input items.
|
|
pub input: Vec<ResponseItem>,
|
|
|
|
/// Whether to store response on server side (disable_response_storage = !store).
|
|
pub store: bool,
|
|
|
|
/// Tools available to the model, including additional tools sourced from
|
|
/// external MCP servers.
|
|
pub tools: Vec<OpenAiTool>,
|
|
|
|
/// Optional override for the built-in BASE_INSTRUCTIONS.
|
|
pub base_instructions_override: Option<String>,
|
|
}
|
|
|
|
impl Prompt {
|
|
pub(crate) fn get_full_instructions(&self, model: &ModelFamily) -> Cow<'_, str> {
|
|
let base = self
|
|
.base_instructions_override
|
|
.as_deref()
|
|
.unwrap_or(BASE_INSTRUCTIONS);
|
|
let mut sections: Vec<&str> = vec![base];
|
|
|
|
// When there are no custom instructions, add apply_patch if either:
|
|
// - the model needs special instructions, or
|
|
// - there is no apply_patch tool present
|
|
let is_apply_patch_tool_present = self
|
|
.tools
|
|
.iter()
|
|
.any(|t| matches!(t, OpenAiTool::Function(f) if f.name == "apply_patch"));
|
|
if self.base_instructions_override.is_none()
|
|
&& (model.needs_special_apply_patch_instructions || !is_apply_patch_tool_present)
|
|
{
|
|
sections.push(APPLY_PATCH_TOOL_INSTRUCTIONS);
|
|
}
|
|
Cow::Owned(sections.join("\n"))
|
|
}
|
|
|
|
pub(crate) fn get_formatted_input(&self) -> Vec<ResponseItem> {
|
|
self.input.clone()
|
|
}
|
|
|
|
/// Creates a formatted user instructions message from a string
|
|
pub(crate) fn format_user_instructions_message(ui: &str) -> ResponseItem {
|
|
ResponseItem::Message {
|
|
id: None,
|
|
role: "user".to_string(),
|
|
content: vec![ContentItem::InputText {
|
|
text: format!("{USER_INSTRUCTIONS_START}{ui}{USER_INSTRUCTIONS_END}"),
|
|
}],
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub enum ResponseEvent {
|
|
Created,
|
|
OutputItemDone(ResponseItem),
|
|
Completed {
|
|
response_id: String,
|
|
token_usage: Option<TokenUsage>,
|
|
},
|
|
OutputTextDelta(String),
|
|
ReasoningSummaryDelta(String),
|
|
ReasoningContentDelta(String),
|
|
ReasoningSummaryPartAdded,
|
|
}
|
|
|
|
#[derive(Debug, Serialize)]
|
|
pub(crate) struct Reasoning {
|
|
pub(crate) effort: ReasoningEffortConfig,
|
|
pub(crate) summary: ReasoningSummaryConfig,
|
|
}
|
|
|
|
/// Controls under the `text` field in the Responses API for GPT-5.
|
|
#[derive(Debug, Serialize, Default, Clone, Copy)]
|
|
pub(crate) struct TextControls {
|
|
#[serde(skip_serializing_if = "Option::is_none")]
|
|
pub(crate) verbosity: Option<OpenAiVerbosity>,
|
|
}
|
|
|
|
#[derive(Debug, Serialize, Default, Clone, Copy)]
|
|
#[serde(rename_all = "lowercase")]
|
|
pub(crate) enum OpenAiVerbosity {
|
|
Low,
|
|
#[default]
|
|
Medium,
|
|
High,
|
|
}
|
|
|
|
impl From<VerbosityConfig> for OpenAiVerbosity {
|
|
fn from(v: VerbosityConfig) -> Self {
|
|
match v {
|
|
VerbosityConfig::Low => OpenAiVerbosity::Low,
|
|
VerbosityConfig::Medium => OpenAiVerbosity::Medium,
|
|
VerbosityConfig::High => OpenAiVerbosity::High,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Request object that is serialized as JSON and POST'ed when using the
|
|
/// Responses API.
|
|
#[derive(Debug, Serialize)]
|
|
pub(crate) struct ResponsesApiRequest<'a> {
|
|
pub(crate) model: &'a str,
|
|
pub(crate) instructions: &'a str,
|
|
// TODO(mbolin): ResponseItem::Other should not be serialized. Currently,
|
|
// we code defensively to avoid this case, but perhaps we should use a
|
|
// separate enum for serialization.
|
|
pub(crate) input: &'a Vec<ResponseItem>,
|
|
pub(crate) tools: &'a [serde_json::Value],
|
|
pub(crate) tool_choice: &'static str,
|
|
pub(crate) parallel_tool_calls: bool,
|
|
pub(crate) reasoning: Option<Reasoning>,
|
|
/// true when using the Responses API.
|
|
pub(crate) store: bool,
|
|
pub(crate) stream: bool,
|
|
pub(crate) include: Vec<String>,
|
|
#[serde(skip_serializing_if = "Option::is_none")]
|
|
pub(crate) prompt_cache_key: Option<String>,
|
|
#[serde(skip_serializing_if = "Option::is_none")]
|
|
pub(crate) text: Option<TextControls>,
|
|
}
|
|
|
|
pub(crate) fn create_reasoning_param_for_request(
|
|
model_family: &ModelFamily,
|
|
effort: ReasoningEffortConfig,
|
|
summary: ReasoningSummaryConfig,
|
|
) -> Option<Reasoning> {
|
|
if model_family.supports_reasoning_summaries {
|
|
Some(Reasoning { effort, summary })
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
pub(crate) fn create_text_param_for_request(
|
|
verbosity: Option<VerbosityConfig>,
|
|
) -> Option<TextControls> {
|
|
verbosity.map(|v| TextControls {
|
|
verbosity: Some(v.into()),
|
|
})
|
|
}
|
|
|
|
pub(crate) struct ResponseStream {
|
|
pub(crate) rx_event: mpsc::Receiver<Result<ResponseEvent>>,
|
|
}
|
|
|
|
impl Stream for ResponseStream {
|
|
type Item = Result<ResponseEvent>;
|
|
|
|
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
|
|
self.rx_event.poll_recv(cx)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use crate::model_family::find_family_for_model;
|
|
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn get_full_instructions_no_user_content() {
|
|
let prompt = Prompt {
|
|
..Default::default()
|
|
};
|
|
let expected = format!("{BASE_INSTRUCTIONS}\n{APPLY_PATCH_TOOL_INSTRUCTIONS}");
|
|
let model_family = find_family_for_model("gpt-4.1").expect("known model slug");
|
|
let full = prompt.get_full_instructions(&model_family);
|
|
assert_eq!(full, expected);
|
|
}
|
|
|
|
#[test]
|
|
fn serializes_text_verbosity_when_set() {
|
|
let input: Vec<ResponseItem> = vec![];
|
|
let tools: Vec<serde_json::Value> = vec![];
|
|
let req = ResponsesApiRequest {
|
|
model: "gpt-5",
|
|
instructions: "i",
|
|
input: &input,
|
|
tools: &tools,
|
|
tool_choice: "auto",
|
|
parallel_tool_calls: false,
|
|
reasoning: None,
|
|
store: true,
|
|
stream: true,
|
|
include: vec![],
|
|
prompt_cache_key: None,
|
|
text: Some(TextControls {
|
|
verbosity: Some(OpenAiVerbosity::Low),
|
|
}),
|
|
};
|
|
|
|
let v = serde_json::to_value(&req).expect("json");
|
|
assert_eq!(
|
|
v.get("text")
|
|
.and_then(|t| t.get("verbosity"))
|
|
.and_then(|s| s.as_str()),
|
|
Some("low")
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn omits_text_when_not_set() {
|
|
let input: Vec<ResponseItem> = vec![];
|
|
let tools: Vec<serde_json::Value> = vec![];
|
|
let req = ResponsesApiRequest {
|
|
model: "gpt-5",
|
|
instructions: "i",
|
|
input: &input,
|
|
tools: &tools,
|
|
tool_choice: "auto",
|
|
parallel_tool_calls: false,
|
|
reasoning: None,
|
|
store: true,
|
|
stream: true,
|
|
include: vec![],
|
|
prompt_cache_key: None,
|
|
text: None,
|
|
};
|
|
|
|
let v = serde_json::to_value(&req).expect("json");
|
|
assert!(v.get("text").is_none());
|
|
}
|
|
}
|