use crate::config_types::Verbosity as VerbosityConfig;
use crate::error::Result;
use crate::model_family::ModelFamily;
use crate::models::ContentItem;
use crate::models::ResponseItem;
use crate::openai_tools::OpenAiTool;
use crate::protocol::TokenUsage;
use codex_apply_patch::APPLY_PATCH_TOOL_INSTRUCTIONS;
use codex_protocol::config_types::ReasoningEffort as ReasoningEffortConfig;
use codex_protocol::config_types::ReasoningSummary as ReasoningSummaryConfig;
use futures::Stream;
use serde::Serialize;
use std::borrow::Cow;
use std::pin::Pin;
use std::task::Context;
use std::task::Poll;
use tokio::sync::mpsc;
/// The `instructions` field in the payload sent to a model should always start
/// with this content.
const BASE_INSTRUCTIONS: &str = include_str!("../prompt.md");
/// wraps user instructions message in a tag for the model to parse more easily.
const USER_INSTRUCTIONS_START: &str = "\n\n";
const USER_INSTRUCTIONS_END: &str = "\n\n";
/// API request payload for a single model turn
#[derive(Default, Debug, Clone)]
pub struct Prompt {
/// Conversation context input items.
pub input: Vec,
/// Whether to store response on server side (disable_response_storage = !store).
pub store: bool,
/// Tools available to the model, including additional tools sourced from
/// external MCP servers.
pub tools: Vec,
/// Optional override for the built-in BASE_INSTRUCTIONS.
pub base_instructions_override: Option,
}
impl Prompt {
pub(crate) fn get_full_instructions(&self, model: &ModelFamily) -> Cow<'_, str> {
let base = self
.base_instructions_override
.as_deref()
.unwrap_or(BASE_INSTRUCTIONS);
let mut sections: Vec<&str> = vec![base];
// When there are no custom instructions, add apply_patch if either:
// - the model needs special instructions, or
// - there is no apply_patch tool present
let is_apply_patch_tool_present = self
.tools
.iter()
.any(|t| matches!(t, OpenAiTool::Function(f) if f.name == "apply_patch"));
if self.base_instructions_override.is_none()
&& (model.needs_special_apply_patch_instructions || !is_apply_patch_tool_present)
{
sections.push(APPLY_PATCH_TOOL_INSTRUCTIONS);
}
Cow::Owned(sections.join("\n"))
}
pub(crate) fn get_formatted_input(&self) -> Vec {
self.input.clone()
}
/// Creates a formatted user instructions message from a string
pub(crate) fn format_user_instructions_message(ui: &str) -> ResponseItem {
ResponseItem::Message {
id: None,
role: "user".to_string(),
content: vec![ContentItem::InputText {
text: format!("{USER_INSTRUCTIONS_START}{ui}{USER_INSTRUCTIONS_END}"),
}],
}
}
}
#[derive(Debug)]
pub enum ResponseEvent {
Created,
OutputItemDone(ResponseItem),
Completed {
response_id: String,
token_usage: Option,
},
OutputTextDelta(String),
ReasoningSummaryDelta(String),
ReasoningContentDelta(String),
ReasoningSummaryPartAdded,
}
#[derive(Debug, Serialize)]
pub(crate) struct Reasoning {
pub(crate) effort: ReasoningEffortConfig,
pub(crate) summary: ReasoningSummaryConfig,
}
/// Controls under the `text` field in the Responses API for GPT-5.
#[derive(Debug, Serialize, Default, Clone, Copy)]
pub(crate) struct TextControls {
#[serde(skip_serializing_if = "Option::is_none")]
pub(crate) verbosity: Option,
}
#[derive(Debug, Serialize, Default, Clone, Copy)]
#[serde(rename_all = "lowercase")]
pub(crate) enum OpenAiVerbosity {
Low,
#[default]
Medium,
High,
}
impl From for OpenAiVerbosity {
fn from(v: VerbosityConfig) -> Self {
match v {
VerbosityConfig::Low => OpenAiVerbosity::Low,
VerbosityConfig::Medium => OpenAiVerbosity::Medium,
VerbosityConfig::High => OpenAiVerbosity::High,
}
}
}
/// Request object that is serialized as JSON and POST'ed when using the
/// Responses API.
#[derive(Debug, Serialize)]
pub(crate) struct ResponsesApiRequest<'a> {
pub(crate) model: &'a str,
pub(crate) instructions: &'a str,
// TODO(mbolin): ResponseItem::Other should not be serialized. Currently,
// we code defensively to avoid this case, but perhaps we should use a
// separate enum for serialization.
pub(crate) input: &'a Vec,
pub(crate) tools: &'a [serde_json::Value],
pub(crate) tool_choice: &'static str,
pub(crate) parallel_tool_calls: bool,
pub(crate) reasoning: Option,
/// true when using the Responses API.
pub(crate) store: bool,
pub(crate) stream: bool,
pub(crate) include: Vec,
#[serde(skip_serializing_if = "Option::is_none")]
pub(crate) prompt_cache_key: Option,
#[serde(skip_serializing_if = "Option::is_none")]
pub(crate) text: Option,
}
pub(crate) fn create_reasoning_param_for_request(
model_family: &ModelFamily,
effort: ReasoningEffortConfig,
summary: ReasoningSummaryConfig,
) -> Option {
if model_family.supports_reasoning_summaries {
Some(Reasoning { effort, summary })
} else {
None
}
}
pub(crate) fn create_text_param_for_request(
verbosity: Option,
) -> Option {
verbosity.map(|v| TextControls {
verbosity: Some(v.into()),
})
}
pub(crate) struct ResponseStream {
pub(crate) rx_event: mpsc::Receiver>,
}
impl Stream for ResponseStream {
type Item = Result;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll