Files
llmx/codex-rs/core/src/tasks/mod.rs
Ahmed Ibrahim 13e1d0362d Delegate review to codex instance (#5572)
In this PR, I am exploring migrating task kind to an invocation of
Codex. The main reason would be getting rid off multiple
`ConversationHistory` state and streamlining our context/history
management.

This approach depends on opening a channel between the sub-codex and
codex. This channel is responsible for forwarding `interactive`
(`approvals`) and `non-interactive` events. The `task` is responsible
for handling those events.

This opens the door for implementing `codex as a tool`, replacing
`compact` and `review`, and potentially subagents.

One consideration is this code is very similar to `app-server` specially
in the approval part. If in the future we wanted an interactive
`sub-codex` we should consider using `codex-mcp`
2025-10-29 21:04:25 +00:00

226 lines
7.4 KiB
Rust

mod compact;
mod ghost_snapshot;
mod regular;
mod review;
mod undo;
mod user_shell;
use std::sync::Arc;
use std::time::Duration;
use async_trait::async_trait;
use tokio::select;
use tokio::sync::Notify;
use tokio_util::sync::CancellationToken;
use tokio_util::task::AbortOnDropHandle;
use tracing::trace;
use tracing::warn;
use crate::AuthManager;
use crate::codex::Session;
use crate::codex::TurnContext;
use crate::protocol::EventMsg;
use crate::protocol::TaskCompleteEvent;
use crate::protocol::TurnAbortReason;
use crate::protocol::TurnAbortedEvent;
use crate::state::ActiveTurn;
use crate::state::RunningTask;
use crate::state::TaskKind;
use codex_protocol::user_input::UserInput;
pub(crate) use compact::CompactTask;
pub(crate) use ghost_snapshot::GhostSnapshotTask;
pub(crate) use regular::RegularTask;
pub(crate) use review::ReviewTask;
pub(crate) use undo::UndoTask;
pub(crate) use user_shell::UserShellCommandTask;
const GRACEFULL_INTERRUPTION_TIMEOUT_MS: u64 = 100;
/// Thin wrapper that exposes the parts of [`Session`] task runners need.
#[derive(Clone)]
pub(crate) struct SessionTaskContext {
session: Arc<Session>,
}
impl SessionTaskContext {
pub(crate) fn new(session: Arc<Session>) -> Self {
Self { session }
}
pub(crate) fn clone_session(&self) -> Arc<Session> {
Arc::clone(&self.session)
}
pub(crate) fn auth_manager(&self) -> Arc<AuthManager> {
Arc::clone(&self.session.services.auth_manager)
}
}
/// Async task that drives a [`Session`] turn.
///
/// Implementations encapsulate a specific Codex workflow (regular chat,
/// reviews, ghost snapshots, etc.). Each task instance is owned by a
/// [`Session`] and executed on a background Tokio task. The trait is
/// intentionally small: implementers identify themselves via
/// [`SessionTask::kind`], perform their work in [`SessionTask::run`], and may
/// release resources in [`SessionTask::abort`].
#[async_trait]
pub(crate) trait SessionTask: Send + Sync + 'static {
/// Describes the type of work the task performs so the session can
/// surface it in telemetry and UI.
fn kind(&self) -> TaskKind;
/// Executes the task until completion or cancellation.
///
/// Implementations typically stream protocol events using `session` and
/// `ctx`, returning an optional final agent message when finished. The
/// provided `cancellation_token` is cancelled when the session requests an
/// abort; implementers should watch for it and terminate quickly once it
/// fires. Returning [`Some`] yields a final message that
/// [`Session::on_task_finished`] will emit to the client.
async fn run(
self: Arc<Self>,
session: Arc<SessionTaskContext>,
ctx: Arc<TurnContext>,
input: Vec<UserInput>,
cancellation_token: CancellationToken,
) -> Option<String>;
/// Gives the task a chance to perform cleanup after an abort.
///
/// The default implementation is a no-op; override this if additional
/// teardown or notifications are required once
/// [`Session::abort_all_tasks`] cancels the task.
async fn abort(&self, session: Arc<SessionTaskContext>, ctx: Arc<TurnContext>) {
let _ = (session, ctx);
}
}
impl Session {
pub async fn spawn_task<T: SessionTask>(
self: &Arc<Self>,
turn_context: Arc<TurnContext>,
input: Vec<UserInput>,
task: T,
) {
self.abort_all_tasks(TurnAbortReason::Replaced).await;
let task: Arc<dyn SessionTask> = Arc::new(task);
let task_kind = task.kind();
let cancellation_token = CancellationToken::new();
let done = Arc::new(Notify::new());
let done_clone = Arc::clone(&done);
let handle = {
let session_ctx = Arc::new(SessionTaskContext::new(Arc::clone(self)));
let ctx = Arc::clone(&turn_context);
let task_for_run = Arc::clone(&task);
let task_cancellation_token = cancellation_token.child_token();
tokio::spawn(async move {
let ctx_for_finish = Arc::clone(&ctx);
let last_agent_message = task_for_run
.run(
Arc::clone(&session_ctx),
ctx,
input,
task_cancellation_token.child_token(),
)
.await;
session_ctx.clone_session().flush_rollout().await;
if !task_cancellation_token.is_cancelled() {
// Emit completion uniformly from spawn site so all tasks share the same lifecycle.
let sess = session_ctx.clone_session();
sess.on_task_finished(ctx_for_finish, last_agent_message)
.await;
}
done_clone.notify_waiters();
})
};
let running_task = RunningTask {
done,
handle: Arc::new(AbortOnDropHandle::new(handle)),
kind: task_kind,
task,
cancellation_token,
turn_context: Arc::clone(&turn_context),
};
self.register_new_active_task(running_task).await;
}
pub async fn abort_all_tasks(self: &Arc<Self>, reason: TurnAbortReason) {
for task in self.take_all_running_tasks().await {
self.handle_task_abort(task, reason.clone()).await;
}
}
pub async fn on_task_finished(
self: &Arc<Self>,
turn_context: Arc<TurnContext>,
last_agent_message: Option<String>,
) {
let mut active = self.active_turn.lock().await;
if let Some(at) = active.as_mut()
&& at.remove_task(&turn_context.sub_id)
{
*active = None;
}
drop(active);
let event = EventMsg::TaskComplete(TaskCompleteEvent { last_agent_message });
self.send_event(turn_context.as_ref(), event).await;
}
async fn register_new_active_task(&self, task: RunningTask) {
let mut active = self.active_turn.lock().await;
let mut turn = ActiveTurn::default();
turn.add_task(task);
*active = Some(turn);
}
async fn take_all_running_tasks(&self) -> Vec<RunningTask> {
let mut active = self.active_turn.lock().await;
match active.take() {
Some(mut at) => {
at.clear_pending().await;
at.drain_tasks()
}
None => Vec::new(),
}
}
async fn handle_task_abort(self: &Arc<Self>, task: RunningTask, reason: TurnAbortReason) {
let sub_id = task.turn_context.sub_id.clone();
if task.cancellation_token.is_cancelled() {
return;
}
trace!(task_kind = ?task.kind, sub_id, "aborting running task");
task.cancellation_token.cancel();
let session_task = task.task;
select! {
_ = task.done.notified() => {
},
_ = tokio::time::sleep(Duration::from_millis(GRACEFULL_INTERRUPTION_TIMEOUT_MS)) => {
warn!("task {sub_id} didn't complete gracefully after {}ms", GRACEFULL_INTERRUPTION_TIMEOUT_MS);
}
}
task.handle.abort();
let session_ctx = Arc::new(SessionTaskContext::new(Arc::clone(self)));
session_task
.abort(session_ctx, Arc::clone(&task.turn_context))
.await;
let event = EventMsg::TurnAborted(TurnAbortedEvent { reason });
self.send_event(task.turn_context.as_ref(), event).await;
}
}
#[cfg(test)]
mod tests {}