mod compact; mod ghost_snapshot; mod regular; mod review; mod undo; mod user_shell; use std::sync::Arc; use std::time::Duration; use async_trait::async_trait; use tokio::select; use tokio::sync::Notify; use tokio_util::sync::CancellationToken; use tokio_util::task::AbortOnDropHandle; use tracing::trace; use tracing::warn; use crate::AuthManager; use crate::codex::Session; use crate::codex::TurnContext; use crate::protocol::EventMsg; use crate::protocol::TaskCompleteEvent; use crate::protocol::TurnAbortReason; use crate::protocol::TurnAbortedEvent; use crate::state::ActiveTurn; use crate::state::RunningTask; use crate::state::TaskKind; use codex_protocol::user_input::UserInput; pub(crate) use compact::CompactTask; pub(crate) use ghost_snapshot::GhostSnapshotTask; pub(crate) use regular::RegularTask; pub(crate) use review::ReviewTask; pub(crate) use undo::UndoTask; pub(crate) use user_shell::UserShellCommandTask; const GRACEFULL_INTERRUPTION_TIMEOUT_MS: u64 = 100; /// Thin wrapper that exposes the parts of [`Session`] task runners need. #[derive(Clone)] pub(crate) struct SessionTaskContext { session: Arc, } impl SessionTaskContext { pub(crate) fn new(session: Arc) -> Self { Self { session } } pub(crate) fn clone_session(&self) -> Arc { Arc::clone(&self.session) } pub(crate) fn auth_manager(&self) -> Arc { Arc::clone(&self.session.services.auth_manager) } } /// Async task that drives a [`Session`] turn. /// /// Implementations encapsulate a specific Codex workflow (regular chat, /// reviews, ghost snapshots, etc.). Each task instance is owned by a /// [`Session`] and executed on a background Tokio task. The trait is /// intentionally small: implementers identify themselves via /// [`SessionTask::kind`], perform their work in [`SessionTask::run`], and may /// release resources in [`SessionTask::abort`]. #[async_trait] pub(crate) trait SessionTask: Send + Sync + 'static { /// Describes the type of work the task performs so the session can /// surface it in telemetry and UI. fn kind(&self) -> TaskKind; /// Executes the task until completion or cancellation. /// /// Implementations typically stream protocol events using `session` and /// `ctx`, returning an optional final agent message when finished. The /// provided `cancellation_token` is cancelled when the session requests an /// abort; implementers should watch for it and terminate quickly once it /// fires. Returning [`Some`] yields a final message that /// [`Session::on_task_finished`] will emit to the client. async fn run( self: Arc, session: Arc, ctx: Arc, input: Vec, cancellation_token: CancellationToken, ) -> Option; /// Gives the task a chance to perform cleanup after an abort. /// /// The default implementation is a no-op; override this if additional /// teardown or notifications are required once /// [`Session::abort_all_tasks`] cancels the task. async fn abort(&self, session: Arc, ctx: Arc) { let _ = (session, ctx); } } impl Session { pub async fn spawn_task( self: &Arc, turn_context: Arc, input: Vec, task: T, ) { self.abort_all_tasks(TurnAbortReason::Replaced).await; let task: Arc = Arc::new(task); let task_kind = task.kind(); let cancellation_token = CancellationToken::new(); let done = Arc::new(Notify::new()); let done_clone = Arc::clone(&done); let handle = { let session_ctx = Arc::new(SessionTaskContext::new(Arc::clone(self))); let ctx = Arc::clone(&turn_context); let task_for_run = Arc::clone(&task); let task_cancellation_token = cancellation_token.child_token(); tokio::spawn(async move { let ctx_for_finish = Arc::clone(&ctx); let last_agent_message = task_for_run .run( Arc::clone(&session_ctx), ctx, input, task_cancellation_token.child_token(), ) .await; session_ctx.clone_session().flush_rollout().await; if !task_cancellation_token.is_cancelled() { // Emit completion uniformly from spawn site so all tasks share the same lifecycle. let sess = session_ctx.clone_session(); sess.on_task_finished(ctx_for_finish, last_agent_message) .await; } done_clone.notify_waiters(); }) }; let running_task = RunningTask { done, handle: Arc::new(AbortOnDropHandle::new(handle)), kind: task_kind, task, cancellation_token, turn_context: Arc::clone(&turn_context), }; self.register_new_active_task(running_task).await; } pub async fn abort_all_tasks(self: &Arc, reason: TurnAbortReason) { for task in self.take_all_running_tasks().await { self.handle_task_abort(task, reason.clone()).await; } } pub async fn on_task_finished( self: &Arc, turn_context: Arc, last_agent_message: Option, ) { let mut active = self.active_turn.lock().await; if let Some(at) = active.as_mut() && at.remove_task(&turn_context.sub_id) { *active = None; } drop(active); let event = EventMsg::TaskComplete(TaskCompleteEvent { last_agent_message }); self.send_event(turn_context.as_ref(), event).await; } async fn register_new_active_task(&self, task: RunningTask) { let mut active = self.active_turn.lock().await; let mut turn = ActiveTurn::default(); turn.add_task(task); *active = Some(turn); } async fn take_all_running_tasks(&self) -> Vec { let mut active = self.active_turn.lock().await; match active.take() { Some(mut at) => { at.clear_pending().await; at.drain_tasks() } None => Vec::new(), } } async fn handle_task_abort(self: &Arc, task: RunningTask, reason: TurnAbortReason) { let sub_id = task.turn_context.sub_id.clone(); if task.cancellation_token.is_cancelled() { return; } trace!(task_kind = ?task.kind, sub_id, "aborting running task"); task.cancellation_token.cancel(); let session_task = task.task; select! { _ = task.done.notified() => { }, _ = tokio::time::sleep(Duration::from_millis(GRACEFULL_INTERRUPTION_TIMEOUT_MS)) => { warn!("task {sub_id} didn't complete gracefully after {}ms", GRACEFULL_INTERRUPTION_TIMEOUT_MS); } } task.handle.abort(); let session_ctx = Arc::new(SessionTaskContext::new(Arc::clone(self))); session_task .abort(session_ctx, Arc::clone(&task.turn_context)) .await; let event = EventMsg::TurnAborted(TurnAbortedEvent { reason }); self.send_event(task.turn_context.as_ref(), event).await; } } #[cfg(test)] mod tests {}