On a high-level, we try to design `config.toml` so that you don't have
to "comment out a lot of stuff" when testing different options.
Previously, defining a sandbox policy was somewhat at odds with this
principle because you would define the policy as attributes of
`[sandbox]` like so:
```toml
[sandbox]
mode = "workspace-write"
writable_roots = [ "/tmp" ]
```
but if you wanted to temporarily change to a read-only sandbox, you
might feel compelled to modify your file to be:
```toml
[sandbox]
mode = "read-only"
# mode = "workspace-write"
# writable_roots = [ "/tmp" ]
```
Technically, commenting out `writable_roots` would not be strictly
necessary, as `mode = "read-only"` would ignore `writable_roots`, but
it's still a reasonable thing to do to keep things tidy.
Currently, the various values for `mode` do not support that many
attributes, so this is not that hard to maintain, but one could imagine
this becoming more complex in the future.
In this PR, we change Codex CLI so that it no longer recognizes
`[sandbox]`. Instead, it introduces a top-level option, `sandbox_mode`,
and `[sandbox_workspace_write]` is used to further configure the sandbox
when when `sandbox_mode = "workspace-write"` is used:
```toml
sandbox_mode = "workspace-write"
[sandbox_workspace_write]
writable_roots = [ "/tmp" ]
```
This feels a bit more future-proof in that it is less tedious to
configure different sandboxes:
```toml
sandbox_mode = "workspace-write"
[sandbox_read_only]
# read-only options here...
[sandbox_workspace_write]
writable_roots = [ "/tmp" ]
[sandbox_danger_full_access]
# danger-full-access options here...
```
In this scheme, you never need to comment out the configuration for an
individual sandbox type: you only need to redefine `sandbox_mode`.
Relatedly, previous to this change, a user had to do `-c
sandbox.mode=read-only` to change the mode on the command line. With
this change, things are arguably a bit cleaner because the equivalent
option is `-c sandbox_mode=read-only` (and now `-c
sandbox_workspace_write=...` can be set separately).
Though more importantly, we introduce the `-s/--sandbox` option to the
CLI, which maps directly to `sandbox_mode` in `config.toml`, making
config override behavior easier to reason about. Moreover, as you can
see in the updates to the various Markdown files, it is much easier to
explain how to configure sandboxing when things like `--sandbox
read-only` can be used as an example.
Relatedly, this cleanup also made it straightforward to add support for
a `sandbox` option for Codex when used as an MCP server (see the changes
to `mcp-server/src/codex_tool_config.rs`).
Fixes https://github.com/openai/codex/issues/1248.
When using the OpenAI Responses API, we now record the `usage` field for
a `"response.completed"` event, which includes metrics about the number
of tokens consumed. We also introduce `openai_model_info.rs`, which
includes current data about the most common OpenAI models available via
the API (specifically `context_window` and `max_output_tokens`). If
Codex does not recognize the model, you can set `model_context_window`
and `model_max_output_tokens` explicitly in `config.toml`.
When then introduce a new event type to `protocol.rs`, `TokenCount`,
which includes the `TokenUsage` for the most recent turn.
Finally, we update the TUI to record the running sum of tokens used so
the percentage of available context window remaining can be reported via
the placeholder text for the composer:

We could certainly get much fancier with this (such as reporting the
estimated cost of the conversation), but for now, we are just trying to
achieve feature parity with the TypeScript CLI.
Though arguably this improves upon the TypeScript CLI, as the TypeScript
CLI uses heuristics to estimate the number of tokens used rather than
using the `usage` information directly:
296996d74e/codex-cli/src/utils/approximate-tokens-used.ts (L3-L16)
Fixes https://github.com/openai/codex/issues/1242
For the `approval_policy` config option, renames `unless-allow-listed`
to `untrusted`. In general, when it comes to exec'ing commands, I think
"trusted" is a more accurate term than "safe."
Also drops the `AskForApproval::AutoEdit` variant, as we were not really
making use of it, anyway.
Fixes https://github.com/openai/codex/issues/1250.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/1378).
* #1379
* __->__ #1378
This is a major redesign of how sandbox configuration works and aims to
fix https://github.com/openai/codex/issues/1248. Specifically, it
replaces `sandbox_permissions` in `config.toml` (and the
`-s`/`--sandbox-permission` CLI flags) with a "table" with effectively
three variants:
```toml
# Safest option: full disk is read-only, but writes and network access are disallowed.
[sandbox]
mode = "read-only"
# The cwd of the Codex task is writable, as well as $TMPDIR on macOS.
# writable_roots can be used to specify additional writable folders.
[sandbox]
mode = "workspace-write"
writable_roots = [] # Optional, defaults to the empty list.
network_access = false # Optional, defaults to false.
# Disable sandboxing: use at your own risk!!!
[sandbox]
mode = "danger-full-access"
```
This should make sandboxing easier to reason about. While we have
dropped support for `-s`, the way it works now is:
- no flags => `read-only`
- `--full-auto` => `workspace-write`
- currently, there is no way to specify `danger-full-access` via a CLI
flag, but we will revisit that as part of
https://github.com/openai/codex/issues/1254
Outstanding issue:
- As noted in the `TODO` on `SandboxPolicy::is_unrestricted()`, we are
still conflating sandbox preferences with approval preferences in that
case, which needs to be cleaned up.
This PR introduces support for `-c`/`--config` so users can override
individual config values on the command line using `--config
name=value`. Example:
```
codex --config model=o4-mini
```
Making it possible to set arbitrary config values on the command line
results in a more flexible configuration scheme and makes it easier to
provide single-line examples that can be copy-pasted from documentation.
Effectively, it means there are four levels of configuration for some
values:
- Default value (e.g., `model` currently defaults to `o4-mini`)
- Value in `config.toml` (e.g., user could override the default to be
`model = "o3"` in their `config.toml`)
- Specifying `-c` or `--config` to override `model` (e.g., user can
include `-c model=o3` in their list of args to Codex)
- If available, a config-specific flag can be used, which takes
precedence over `-c` (e.g., user can specify `--model o3` in their list
of args to Codex)
Now that it is possible to specify anything that could be configured in
`config.toml` on the command line using `-c`, we do not need to have a
custom flag for every possible config option (which can clutter the
output of `--help`). To that end, as part of this PR, we drop support
for the `--disable-response-storage` flag, as users can now specify `-c
disable_response_storage=true` to get the equivalent functionality.
Under the hood, this works by loading the `config.toml` into a
`toml::Value`. Then for each `key=value`, we create a small synthetic
TOML file with `value` so that we can run the TOML parser to get the
equivalent `toml::Value`. We then parse `key` to determine the point in
the original `toml::Value` to do the insert/replace. Once all of the
overrides from `-c` args have been applied, the `toml::Value` is
deserialized into a `ConfigToml` and then the `ConfigOverrides` are
applied, as before.
Historically, we spawned the Seatbelt and Landlock sandboxes in
substantially different ways:
For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy
specified as an arg followed by the original command:
d1de7bb383/codex-rs/core/src/exec.rs (L147-L219)
For **Landlock/Seccomp**, we would do
`tokio::runtime::Builder::new_current_thread()`, _invoke
Landlock/Seccomp APIs to modify the permissions of that new thread_, and
then spawn the command:
d1de7bb383/codex-rs/core/src/exec_linux.rs (L28-L49)
While it is neat that Landlock/Seccomp supports applying a policy to
only one thread without having to apply it to the entire process, it
requires us to maintain two different codepaths and is a bit harder to
reason about. The tipping point was
https://github.com/openai/codex/pull/1061, in which we had to start
building up the `env` in an unexpected way for the existing
Landlock/Seccomp approach to continue to work.
This PR overhauls things so that we do similar things for Mac and Linux.
It turned out that we were already building our own "helper binary"
comparable to Mac's `sandbox-exec` as part of the `cli` crate:
d1de7bb383/codex-rs/cli/Cargo.toml (L10-L12)
We originally created this to build a small binary to include with the
Node.js version of the Codex CLI to provide support for Linux
sandboxing.
Though the sticky bit is that, at this point, we still want to deploy
the Rust version of Codex as a single, standalone binary rather than a
CLI and a supporting sandboxing binary. To satisfy this goal, we use
"the arg0 trick," in which we:
* use `std::env::current_exe()` to get the path to the CLI that is
currently running
* use the CLI as the `program` for the `Command`
* set `"codex-linux-sandbox"` as arg0 for the `Command`
A CLI that supports sandboxing should check arg0 at the start of the
program. If it is `"codex-linux-sandbox"`, it must invoke
`codex_linux_sandbox::run_main()`, which runs the CLI as if it were
`codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the
appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn
the original command, so do _replace_ the process rather than spawn a
subprocess. Incidentally, we do this before starting the Tokio runtime,
so the process should only have one thread when `execvp(3)` is called.
Because the `core` crate that needs to spawn the Linux sandboxing is not
a CLI in its own right, this means that every CLI that includes `core`
and relies on this behavior has to (1) implement it and (2) provide the
path to the sandboxing executable. While the path is almost always
`std::env::current_exe()`, we needed to make this configurable for
integration tests, so `Config` now has a `codex_linux_sandbox_exe:
Option<PathBuf>` property to facilitate threading this through,
introduced in https://github.com/openai/codex/pull/1089.
This common pattern is now captured in
`codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs`
functions that should use it have been updated as part of this PR.
The `codex-linux-sandbox` crate added to the Cargo workspace as part of
this PR now has the bulk of the Landlock/Seccomp logic, which makes
`core` a bit simpler. Indeed, `core/src/exec_linux.rs` and
`core/src/landlock.rs` were removed/ported as part of this PR. I also
moved the unit tests for this code into an integration test,
`linux-sandbox/tests/landlock.rs`, in which I use
`env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for
`codex_linux_sandbox_exe` since `std::env::current_exe()` is not
appropriate in that case.
https://github.com/openai/codex/pull/1086 is a work-in-progress to make
Linux sandboxing work more like Seatbelt where, for the command we want
to sandbox, we build up the command and then hand it, and some sandbox
configuration flags, to another command to set up the sandbox and then
run it.
In the case of Seatbelt, macOS provides this helper binary and provides
it at `/usr/bin/sandbox-exec`. For Linux, we have to build our own and
pass it through (which is what #1086 does), so this makes the new
`codex_linux_sandbox_exe` available on `Config` so that it will later be
available in `exec.rs` when we need it in #1086.
This introduces an experimental `--output-last-message` flag that can be
used to identify a file where the final message from the agent will be
written. Two use cases:
- Ultimately, we will likely add a `--quiet` option to `exec`, but even
if the user does not want any output written to the terminal, they
probably want to know what the agent did. Writing the output to a file
makes it possible to get that information in a clean way.
- Relatedly, when using `exec` in CI, it is easier to review the
transcript written "normally," (i.e., not as JSON or something with
extra escapes), but getting programmatic access to the last message is
likely helpful, so writing the last message to a file gets the best of
both worlds.
I am calling this "experimental" because it is possible that we are
overfitting and will want a more general solution to this problem that
would justify removing this flag.
This is a large change to support a "history" feature like you would
expect in a shell like Bash.
History events are recorded in `$CODEX_HOME/history.jsonl`. Because it
is a JSONL file, it is straightforward to append new entries (as opposed
to the TypeScript file that uses `$CODEX_HOME/history.json`, so to be
valid JSON, each new entry entails rewriting the entire file). Because
it is possible for there to be multiple instances of Codex CLI writing
to `history.jsonl` at once, we use advisory file locking when working
with `history.jsonl` in `codex-rs/core/src/message_history.rs`.
Because we believe history is a sufficiently useful feature, we enable
it by default. Though to provide some safety, we set the file
permissions of `history.jsonl` to be `o600` so that other users on the
system cannot read the user's history. We do not yet support a default
list of `SENSITIVE_PATTERNS` as the TypeScript CLI does:
3fdf9df133/codex-cli/src/utils/storage/command-history.ts (L10-L17)
We are going to take a more conservative approach to this list in the
Rust CLI. For example, while `/\b[A-Za-z0-9-_]{20,}\b/` might exclude
sensitive information like API tokens, it would also exclude valuable
information such as references to Git commits.
As noted in the updated documentation, users can opt-out of history by
adding the following to `config.toml`:
```toml
[history]
persistence = "none"
```
Because `history.jsonl` could, in theory, be quite large, we take a[n
arguably overly pedantic] approach in reading history entries into
memory. Specifically, we start by telling the client the current number
of entries in the history file (`history_entry_count`) as well as the
inode (`history_log_id`) of `history.jsonl` (see the new fields on
`SessionConfiguredEvent`).
The client is responsible for keeping new entries in memory to create a
"local history," but if the user hits up enough times to go "past" the
end of local history, then the client should use the new
`GetHistoryEntryRequest` in the protocol to fetch older entries.
Specifically, it should pass the `history_log_id` it was given
originally and work backwards from `history_entry_count`. (It should
really fetch history in batches rather than one-at-a-time, but that is
something we can improve upon in subsequent PRs.)
The motivation behind this crazy scheme is that it is designed to defend
against:
* The `history.jsonl` being truncated during the session such that the
index into the history is no longer consistent with what had been read
up to that point. We do not yet have logic to enforce a `max_bytes` for
`history.jsonl`, but once we do, we will aspire to implement it in a way
that should result in a new inode for the file on most systems.
* New items from concurrent Codex CLI sessions amending to the history.
Because, in absence of truncation, `history.jsonl` is an append-only
log, so long as the client reads backwards from `history_entry_count`,
it should always get a consistent view of history. (That said, it will
not be able to read _new_ commands from concurrent sessions, but perhaps
we will introduce a `/` command to reload latest history or something
down the road.)
Admittedly, my testing of this feature thus far has been fairly light. I
expect we will find bugs and introduce enhancements/fixes going forward.
For now, this removes the `#[non_exhaustive]` directive on `EventMsg` so
that we are forced to handle all `EventMsg` by default. (We may revisit
this if/when we publish `core/` as a `lib` crate.) For now, it is
helpful to have this as a forcing function because we have effectively
two UIs (`tui` and `exec`) and usually when we add a new variant to
`EventMsg`, we want to be sure that we update both.
Previously, running Codex as an MCP server required a standalone binary
in our Cargo workspace, but this PR makes it available as a subcommand
(`mcp`) of the main CLI.
Ran this with:
```
RUST_LOG=debug npx @modelcontextprotocol/inspector cargo run --bin codex -- mcp
```
and verified it worked as expected in the inspector at
`http://127.0.0.1:6274/`.
https://github.com/openai/codex/pull/922 did this for the
`SessionConfigured` enum variant, and I think it is generally helpful to
be able to work with the values as each enum variant as their own type,
so this converts the remaining variants and updates all of the
callsites.
Added a simple unit test to verify that the JSON-serialized version of
`Event` does not have any unexpected nesting.
This introduces a much-needed "profile" concept where users can specify
a collection of options under one name and then pass that via
`--profile` to the CLI.
This PR introduces the `ConfigProfile` struct and makes it a field of
`CargoToml`. It further updates
`Config::load_from_base_config_with_overrides()` to respect
`ConfigProfile`, overriding default values where appropriate. A detailed
unit test is added at the end of `config.rs` to verify this behavior.
Details on how to use this feature have also been added to
`codex-rs/README.md`.
Adds `expect()` as a denied lint. Same deal applies with `unwrap()`
where we now need to put `#[expect(...` on ones that we legit want. Took
care to enable `expect()` in test contexts.
# Tests
```
cargo fmt
cargo clippy --all-features --all-targets --no-deps -- -D warnings
cargo test
```
Sets submodules to use workspace lints. Added denying unwrap as a
workspace level lint, which found a couple of cases where we could have
propagated errors. Also manually labeled ones that were fine by my eye.
This is the first step in supporting other model providers in the Rust
CLI. Specifically, this PR adds support for the new entries in `Config`
and `ConfigOverrides` to specify a `ModelProviderInfo`, which is the
basic config needed for an LLM provider. This PR does not get us all the
way there yet because `client.rs` still categorically appends
`/responses` to the URL and expects the endpoint to support the OpenAI
Responses API. Will fix that next!
Some effects of this change:
- New formatting changes across many files. No functionality changes
should occur from that.
- Calls to `set_env` are considered unsafe, since this only happens in
tests we wrap them in `unsafe` blocks
I started this PR because I wanted to share the `format_duration()`
utility function in `codex-rs/exec/src/event_processor.rs` with the TUI.
The question was: where to put it?
`core` should have as few dependencies as possible, so moving it there
would introduce a dependency on `chrono`, which seemed undesirable.
`core` already had this `cli` feature to deal with a similar situation
around sharing common utility functions, so I decided to:
* make `core` feature-free
* introduce `common`
* `common` can have as many "special interest" features as it needs,
each of which can declare their own deps
* the first two features of common are `cli` and `elapsed`
In practice, this meant updating a number of `Cargo.toml` files,
replacing this line:
```toml
codex-core = { path = "../core", features = ["cli"] }
```
with these:
```toml
codex-core = { path = "../core" }
codex-common = { path = "../common", features = ["cli"] }
```
Moving `format_duration()` into its own file gave it some "breathing
room" to add a unit test, so I had Codex generate some tests and new
support for durations over 1 minute.
This PR replaces the placeholder `"echo"` tool call in the MCP server
with a `"codex"` tool that calls Codex. Events such as
`ExecApprovalRequest` and `ApplyPatchApprovalRequest` are not handled
properly yet, but I have `approval_policy = "never"` set in my
`~/.codex/config.toml` such that those codepaths are not exercised.
The schema for this MPC tool is defined by a new `CodexToolCallParam`
struct introduced in this PR. It is fairly similar to `ConfigOverrides`,
as the param is used to help create the `Config` used to start the Codex
session, though it also includes the `prompt` used to kick off the
session.
This PR also introduces the use of the third-party `schemars` crate to
generate the JSON schema, which is verified in the
`verify_codex_tool_json_schema()` unit test.
Events that are dispatched during the Codex session are sent back to the
MCP client as MCP notifications. This gives the client a way to monitor
progress as the tool call itself may take minutes to complete depending
on the complexity of the task requested by the user.
In the video below, I launched the server via:
```shell
mcp-server$ RUST_LOG=debug npx @modelcontextprotocol/inspector cargo run --
```
In the video, you can see the flow of:
* requesting the list of tools
* choosing the **codex** tool
* entering a value for **prompt** and then making the tool call
Note that I left the other fields blank because when unspecified, the
values in my `~/.codex/config.toml` were used:
https://github.com/user-attachments/assets/1975058c-b004-43ef-8c8d-800a953b8192
Note that while using the inspector, I did run into
https://github.com/modelcontextprotocol/inspector/issues/293, though the
tip about ensuring I had only one instance of the **MCP Inspector** tab
open in my browser seemed to fix things.