Add a `--add-dir` CLI flag so sessions can use extra writable roots in
addition to the ones specified in the config file. These are ephemerally
added during the session only.
Fixes#3303Fixes#2797
Add proper feature flag instead of having custom flags for everything.
This is just for experimental/wip part of the code
It can be used through CLI:
```bash
codex --enable unified_exec --disable view_image_tool
```
Or in the `config.toml`
```toml
# Global toggles applied to every profile unless overridden.
[features]
apply_patch_freeform = true
view_image_tool = false
```
Follow-up:
In a following PR, the goal is to have a default have `bundles` of
features that we can associate to a model
# External (non-OpenAI) Pull Request Requirements
Before opening this Pull Request, please read the dedicated
"Contributing" markdown file or your PR may be closed:
https://github.com/openai/codex/blob/main/docs/contributing.md
If your PR conforms to our contribution guidelines, replace this text
with a detailed and high quality description of your changes.
# External (non-OpenAI) Pull Request Requirements
Before opening this Pull Request, please read the dedicated
"Contributing" markdown file or your PR may be closed:
https://github.com/openai/codex/blob/main/docs/contributing.md
If your PR conforms to our contribution guidelines, replace this text
with a detailed and high quality description of your changes.
when exiting a session that was started with `codex resume`, the note
about how to resume again wasn't being printed.
thanks @aibrahim-oai for pointing out this issue!
## Summary
- add a `codex sandbox` subcommand with macOS and Linux targets while
keeping the legacy `codex debug` aliases
- update documentation to highlight the new sandbox entrypoints and
point existing references to the new command
- clarify the core README about the linux sandbox helper alias
## Testing
- just fmt
- just fix -p codex-cli
- cargo test -p codex-cli
------
https://chatgpt.com/codex/tasks/task_i_68e2e00ca1e8832d8bff53aa0b50b49e
Previously, users could supply their API key directly via:
```shell
codex login --api-key KEY
```
but this has the drawback that `KEY` is more likely to end up in shell
history, can be read from `/proc`, etc.
This PR removes support for `--api-key` and replaces it with
`--with-api-key`, which reads the key from stdin, so either of these are
better options:
```
printenv OPENAI_API_KEY | codex login --with-api-key
codex login --with-api-key < my_key.txt
```
Other CLIs, such as `gh auth login --with-token`, follow the same
practice.
We continue the separation between `codex app-server` and `codex
mcp-server`.
In particular, we introduce a new crate, `codex-app-server-protocol`,
and migrate `codex-rs/protocol/src/mcp_protocol.rs` into it, renaming it
`codex-rs/app-server-protocol/src/protocol.rs`.
Because `ConversationId` was defined in `mcp_protocol.rs`, we move it
into its own file, `codex-rs/protocol/src/conversation_id.rs`, and
because it is referenced in a ton of places, we have to touch a lot of
files as part of this PR.
We also decide to get away from proper JSON-RPC 2.0 semantics, so we
also introduce `codex-rs/app-server-protocol/src/jsonrpc_lite.rs`, which
is basically the same `JSONRPCMessage` type defined in `mcp-types`
except with all of the `"jsonrpc": "2.0"` removed.
Getting rid of `"jsonrpc": "2.0"` makes our serialization logic
considerably simpler, as we can lean heavier on serde to serialize
directly into the wire format that we use now.
I don't believe there is any upside in making process hardening opt-in
for Codex CLI releases. If you want to tinker with Codex CLI, then build
from source (or run as `root`)?
This is a very large PR with some non-backwards-compatible changes.
Historically, `codex mcp` (or `codex mcp serve`) started a JSON-RPC-ish
server that had two overlapping responsibilities:
- Running an MCP server, providing some basic tool calls.
- Running the app server used to power experiences such as the VS Code
extension.
This PR aims to separate these into distinct concepts:
- `codex mcp-server` for the MCP server
- `codex app-server` for the "application server"
Note `codex mcp` still exists because it already has its own subcommands
for MCP management (`list`, `add`, etc.)
The MCP logic continues to live in `codex-rs/mcp-server` whereas the
refactored app server logic is in the new `codex-rs/app-server` folder.
Note that most of the existing integration tests in
`codex-rs/mcp-server/tests/suite` were actually for the app server, so
all the tests have been moved with the exception of
`codex-rs/mcp-server/tests/suite/mod.rs`.
Because this is already a large diff, I tried not to change more than I
had to, so `codex-rs/app-server/tests/common/mcp_process.rs` still uses
the name `McpProcess` for now, but I will do some mechanical renamings
to things like `AppServer` in subsequent PRs.
While `mcp-server` and `app-server` share some overlapping functionality
(like reading streams of JSONL and dispatching based on message types)
and some differences (completely different message types), I ended up
doing a bit of copypasta between the two crates, as both have somewhat
similar `message_processor.rs` and `outgoing_message.rs` files for now,
though I expect them to diverge more in the near future.
One material change is that of the initialize handshake for `codex
app-server`, as we no longer use the MCP types for that handshake.
Instead, we update `codex-rs/protocol/src/mcp_protocol.rs` to add an
`Initialize` variant to `ClientRequest`, which takes the `ClientInfo`
object we need to update the `USER_AGENT_SUFFIX` in
`codex-rs/app-server/src/message_processor.rs`.
One other material change is in
`codex-rs/app-server/src/codex_message_processor.rs` where I eliminated
a use of the `send_event_as_notification()` method I am generally trying
to deprecate (because it blindly maps an `EventMsg` into a
`JSONNotification`) in favor of `send_server_notification()`, which
takes a `ServerNotification`, as that is intended to be a custom enum of
all notification types supported by the app server. So to make this
update, I had to introduce a new variant of `ServerNotification`,
`SessionConfigured`, which is a non-backwards compatible change with the
old `codex mcp`, and clients will have to be updated after the next
release that contains this PR. Note that
`codex-rs/app-server/tests/suite/list_resume.rs` also had to be update
to reflect this change.
I introduced `codex-rs/utils/json-to-toml/src/lib.rs` as a small utility
crate to avoid some of the copying between `mcp-server` and
`app-server`.
# External (non-OpenAI) Pull Request Requirements
Before opening this Pull Request, please read the dedicated
"Contributing" markdown file or your PR may be closed:
https://github.com/openai/codex/blob/main/docs/contributing.md
If your PR conforms to our contribution guidelines, replace this text
with a detailed and high quality description of your changes.
# test
```
codex-rs % export CODEX_DEVICE_AUTH_BASE_URL=http://localhost:3007
codex-rs % cargo run --bin codex login --experimental_use-device-code
Compiling codex-login v0.0.0 (/Users/rakesh/code/codex/codex-rs/login)
Compiling codex-mcp-server v0.0.0 (/Users/rakesh/code/codex/codex-rs/mcp-server)
Compiling codex-tui v0.0.0 (/Users/rakesh/code/codex/codex-rs/tui)
Compiling codex-cli v0.0.0 (/Users/rakesh/code/codex/codex-rs/cli)
Finished `dev` profile [unoptimized + debuginfo] target(s) in 2.90s
Running `target/debug/codex login --experimental_use-device-code`
To authenticate, enter this code when prompted: 6Q27-KBVRF with interval 5
^C
```
The error in the last line is since the poll endpoint is not yet
implemented
This removes the `codex responses-api-proxy` subcommand in favor of
running it as a standalone CLI.
As part of this change, we:
- remove the dependency on `tokio`/`async/await` as well as `codex_arg0`
- introduce the use of `pre_main_hardening()` so `CODEX_SECURE_MODE=1`
is not required
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/4404).
* #4406
* __->__ #4404
* #4403
Details are in `responses-api-proxy/README.md`, but the key contribution
of this PR is a new subcommand, `codex responses-api-proxy`, which reads
the auth token for use with the OpenAI Responses API from `stdin` at
startup and then proxies `POST` requests to `/v1/responses` over to
`https://api.openai.com/v1/responses`, injecting the auth token as part
of the `Authorization` header.
The expectation is that `codex responses-api-proxy` is launched by a
privileged user who has access to the auth token so that it can be used
by unprivileged users of the Codex CLI on the same host.
If the client only has one user account with `sudo`, one option is to:
- run `sudo codex responses-api-proxy --http-shutdown --server-info
/tmp/server-info.json` to start the server
- record the port written to `/tmp/server-info.json`
- relinquish their `sudo` privileges (which is irreversible!) like so:
```
sudo deluser $USER sudo || sudo gpasswd -d $USER sudo || true
```
- use `codex` with the proxy (see `README.md`)
- when done, make a `GET` request to the server using the `PORT` from
`server-info.json` to shut it down:
```shell
curl --fail --silent --show-error "http://127.0.0.1:$PORT/shutdown"
```
To protect the auth token, we:
- allocate a 1024 byte buffer on the stack and write `"Bearer "` into it
to start
- we then read from `stdin`, copying to the contents into the buffer
after the prefix
- after verifying the input looks good, we create a `String` from that
buffer (so the data is now on the heap)
- we zero out the stack-allocated buffer using
https://crates.io/crates/zeroize so it is not optimized away by the
compiler
- we invoke `.leak()` on the `String` so we can treat its contents as a
`&'static str`, as it will live for the rest of the processs
- on UNIX, we `mlock(2)` the memory backing the `&'static str`
- when using the `&'static str` when building an HTTP request, we use
`HeaderValue::from_static()` to avoid copying the `&str`
- we also invoke `.set_sensitive(true)` on the `HeaderValue`, which in
theory indicates to other parts of the HTTP stack that the header should
be treated with "special care" to avoid leakage:
439d1c50d7/src/header/value.rs (L346-L376)
Because the `codex` process could contain sensitive information in
memory, such as API keys, we add logic so that when
`CODEX_SECURE_MODE=1` is specified, we avail ourselves of whatever the
operating system provides to restrict observability/tampering, which
includes:
- disabling `ptrace(2)`, so it is not possible to attach to the process
with a debugger, such as `gdb`
- disabling core dumps
Admittedly, a user with root privileges can defeat these safeguards.
For now, we only add support for this in the `codex` multitool, but we
may ultimately want to support this in some of the smaller CLIs that are
buildable out of our Cargo workspace.
Adding the ability to resume conversations.
we have one verb `resume`.
Behavior:
`tui`:
`codex resume`: opens session picker
`codex resume --last`: continue last message
`codex resume <session id>`: continue conversation with `session id`
`exec`:
`codex resume --last`: continue last conversation
`codex resume <session id>`: continue conversation with `session id`
Implementation:
- I added a function to find the path in `~/.codex/sessions/` with a
`UUID`. This is helpful in resuming with session id.
- Added the above mentioned flags
- Added lots of testing
This PR adds the following:
* A getAuthStatus method on the mcp server. This returns the auth method
currently in use (chatgpt or apikey) or none if the user is not
authenticated. It also returns the "preferred auth method" which
reflects the `preferred_auth_method` value in the config.
* A logout method on the mcp server. If called, it logs out the user and
deletes the `auth.json` file — the same behavior in the cli's `/logout`
command.
* An `authStatusChange` event notification that is sent when the auth
status changes due to successful login or logout operations.
* Logic to pass command-line config overrides to the mcp server at
startup time. This allows use cases like `codex mcp -c
preferred_auth_method=apikey`.
## Summary
- ensure CLI help uses `codex` as program name regardless of binary
filename
## Testing
- `just fmt`
- `just fix` *(fails: `let` expressions in this position are unstable)*
- `cargo test --all-features` *(fails: `let` expressions in this
position are unstable)*
------
https://chatgpt.com/codex/tasks/task_i_689bd5a731188320814dcbbc546ce22a
## Summary
- support `codex logout` via new subcommand and helper that removes the
stored `auth.json`
- expose a `logout` function in `codex-login` and test it
- add `/logout` slash command in the TUI; command list is filtered when
not logged in and the handler deletes `auth.json` then exits
## Testing
- `just fix` *(fails: failed to get `diffy` from crates.io)*
- `cargo test --all-features` *(fails: failed to get `diffy` from
crates.io)*
------
https://chatgpt.com/codex/tasks/task_i_68945c3facac832ca83d48499716fb51
This sets up the scaffolding and basic flow for a TUI onboarding
experience. It covers sign in with ChatGPT, env auth, as well as some
safety guidance.
Next up:
1. Replace the git warning screen
2. Use this to configure default approval/sandbox modes
Note the shimmer flashes are from me slicing the video, not jank.
https://github.com/user-attachments/assets/0fbe3479-fdde-41f3-87fb-a7a83ab895b8
Perhaps there was an intention to make the login screen prettier, but it
feels quite silly right now to just have a screen that says "press q",
so replace it with something that lets the user directly login without
having to quit the app.
<img width="1283" height="635" alt="Screenshot 2025-07-28 at 2 54 05 PM"
src="https://github.com/user-attachments/assets/f19e5595-6ef9-4a2d-b409-aa61b30d3628"
/>
This update replaces the previous ratatui history widget with an
append-only log so that the terminal can handle text selection and
scrolling. It also disables streaming responses, which we'll do our best
to bring back in a later PR. It also adds a small summary of token use
after the TUI exits.
In order to to this, I created a new `chatgpt` crate where we can put
any code that interacts directly with ChatGPT as opposed to the OpenAI
API. I added a disclaimer to the README for it that it should primarily
be modified by OpenAI employees.
https://github.com/user-attachments/assets/bb978e33-d2c9-4d8e-af28-c8c25b1988e8
Current 0.4.0 release:
```
~/code/codex2/codex-rs$ codex completion | head
_codex-cli() {
local i cur prev opts cmd
COMPREPLY=()
if [[ "${BASH_VERSINFO[0]}" -ge 4 ]]; then
cur="$2"
else
cur="${COMP_WORDS[COMP_CWORD]}"
fi
prev="$3"
cmd=""
```
with this change:
```
~/code/codex2/codex-rs$ just codex completion | head
cargo run --bin codex -- "$@"
Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.82s
Running `target/debug/codex completion`
_codex() {
local i cur prev opts cmd
COMPREPLY=()
if [[ "${BASH_VERSINFO[0]}" -ge 4 ]]; then
cur="$2"
else
cur="${COMP_WORDS[COMP_CWORD]}"
fi
prev="$3"
cmd=""
```
This does not implement the full Login with ChatGPT experience, but it
should unblock people.
**What works**
* The `codex` multitool now has a `login` subcommand, so you can run
`codex login`, which should write `CODEX_HOME/auth.json` if you complete
the flow successfully. The TUI will now read the `OPENAI_API_KEY` from
`auth.json`.
* The TUI should refresh the token if it has expired and the necessary
information is in `auth.json`.
* There is a `LoginScreen` in the TUI that tells you to run `codex
login` if both (1) your model provider expects to use `OPENAI_API_KEY`
as its env var, and (2) `OPENAI_API_KEY` is not set.
**What does not work**
* The `LoginScreen` does not support the login flow from within the TUI.
Instead, it tells you to quit, run `codex login`, and then run `codex`
again.
* `codex exec` does read from `auth.json` yet, nor does it direct the
user to go through the login flow if `OPENAI_API_KEY` is not be found.
* The `maybeRedeemCredits()` function from `get-api-key.tsx` has not
been ported from TypeScript to `login_with_chatgpt.py` yet:
a67a67f325/codex-cli/src/utils/get-api-key.tsx (L84-L89)
**Implementation**
Currently, the OAuth flow requires running a local webserver on
`127.0.0.1:1455`. It seemed wasteful to incur the additional binary cost
of a webserver dependency in the Rust CLI just to support login, so
instead we implement this logic in Python, as Python has a `http.server`
module as part of its standard library. Specifically, we bundle the
contents of a single Python file as a string in the Rust CLI and then
use it to spawn a subprocess as `python3 -c
{{SOURCE_FOR_PYTHON_SERVER}}`.
As such, the most significant files in this PR are:
```
codex-rs/login/src/login_with_chatgpt.py
codex-rs/login/src/lib.rs
```
Now that the CLI may load `OPENAI_API_KEY` from the environment _or_
`CODEX_HOME/auth.json`, we need a new abstraction for reading/writing
this variable, so we introduce:
```
codex-rs/core/src/openai_api_key.rs
```
Note that `std::env::set_var()` is [rightfully] `unsafe` in Rust 2024,
so we use a LazyLock<RwLock<Option<String>>> to store `OPENAI_API_KEY`
so it is read in a thread-safe manner.
Ultimately, it should be possible to go through the entire login flow
from the TUI. This PR introduces a placeholder `LoginScreen` UI for that
right now, though the new `codex login` subcommand introduced in this PR
should be a viable workaround until the UI is ready.
**Testing**
Because the login flow is currently implemented in a standalone Python
file, you can test it without building any Rust code as follows:
```
rm -rf /tmp/codex_home && mkdir /tmp/codex_home
CODEX_HOME=/tmp/codex_home python3 codex-rs/login/src/login_with_chatgpt.py
```
For reference:
* the original TypeScript implementation was introduced in
https://github.com/openai/codex/pull/963
* support for redeeming credits was later added in
https://github.com/openai/codex/pull/974
This PR introduces support for `-c`/`--config` so users can override
individual config values on the command line using `--config
name=value`. Example:
```
codex --config model=o4-mini
```
Making it possible to set arbitrary config values on the command line
results in a more flexible configuration scheme and makes it easier to
provide single-line examples that can be copy-pasted from documentation.
Effectively, it means there are four levels of configuration for some
values:
- Default value (e.g., `model` currently defaults to `o4-mini`)
- Value in `config.toml` (e.g., user could override the default to be
`model = "o3"` in their `config.toml`)
- Specifying `-c` or `--config` to override `model` (e.g., user can
include `-c model=o3` in their list of args to Codex)
- If available, a config-specific flag can be used, which takes
precedence over `-c` (e.g., user can specify `--model o3` in their list
of args to Codex)
Now that it is possible to specify anything that could be configured in
`config.toml` on the command line using `-c`, we do not need to have a
custom flag for every possible config option (which can clutter the
output of `--help`). To that end, as part of this PR, we drop support
for the `--disable-response-storage` flag, as users can now specify `-c
disable_response_storage=true` to get the equivalent functionality.
Under the hood, this works by loading the `config.toml` into a
`toml::Value`. Then for each `key=value`, we create a small synthetic
TOML file with `value` so that we can run the TOML parser to get the
equivalent `toml::Value`. We then parse `key` to determine the point in
the original `toml::Value` to do the insert/replace. Once all of the
overrides from `-c` args have been applied, the `toml::Value` is
deserialized into a `ConfigToml` and then the `ConfigOverrides` are
applied, as before.
Historically, we spawned the Seatbelt and Landlock sandboxes in
substantially different ways:
For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy
specified as an arg followed by the original command:
d1de7bb383/codex-rs/core/src/exec.rs (L147-L219)
For **Landlock/Seccomp**, we would do
`tokio::runtime::Builder::new_current_thread()`, _invoke
Landlock/Seccomp APIs to modify the permissions of that new thread_, and
then spawn the command:
d1de7bb383/codex-rs/core/src/exec_linux.rs (L28-L49)
While it is neat that Landlock/Seccomp supports applying a policy to
only one thread without having to apply it to the entire process, it
requires us to maintain two different codepaths and is a bit harder to
reason about. The tipping point was
https://github.com/openai/codex/pull/1061, in which we had to start
building up the `env` in an unexpected way for the existing
Landlock/Seccomp approach to continue to work.
This PR overhauls things so that we do similar things for Mac and Linux.
It turned out that we were already building our own "helper binary"
comparable to Mac's `sandbox-exec` as part of the `cli` crate:
d1de7bb383/codex-rs/cli/Cargo.toml (L10-L12)
We originally created this to build a small binary to include with the
Node.js version of the Codex CLI to provide support for Linux
sandboxing.
Though the sticky bit is that, at this point, we still want to deploy
the Rust version of Codex as a single, standalone binary rather than a
CLI and a supporting sandboxing binary. To satisfy this goal, we use
"the arg0 trick," in which we:
* use `std::env::current_exe()` to get the path to the CLI that is
currently running
* use the CLI as the `program` for the `Command`
* set `"codex-linux-sandbox"` as arg0 for the `Command`
A CLI that supports sandboxing should check arg0 at the start of the
program. If it is `"codex-linux-sandbox"`, it must invoke
`codex_linux_sandbox::run_main()`, which runs the CLI as if it were
`codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the
appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn
the original command, so do _replace_ the process rather than spawn a
subprocess. Incidentally, we do this before starting the Tokio runtime,
so the process should only have one thread when `execvp(3)` is called.
Because the `core` crate that needs to spawn the Linux sandboxing is not
a CLI in its own right, this means that every CLI that includes `core`
and relies on this behavior has to (1) implement it and (2) provide the
path to the sandboxing executable. While the path is almost always
`std::env::current_exe()`, we needed to make this configurable for
integration tests, so `Config` now has a `codex_linux_sandbox_exe:
Option<PathBuf>` property to facilitate threading this through,
introduced in https://github.com/openai/codex/pull/1089.
This common pattern is now captured in
`codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs`
functions that should use it have been updated as part of this PR.
The `codex-linux-sandbox` crate added to the Cargo workspace as part of
this PR now has the bulk of the Landlock/Seccomp logic, which makes
`core` a bit simpler. Indeed, `core/src/exec_linux.rs` and
`core/src/landlock.rs` were removed/ported as part of this PR. I also
moved the unit tests for this code into an integration test,
`linux-sandbox/tests/landlock.rs`, in which I use
`env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for
`codex_linux_sandbox_exe` since `std::env::current_exe()` is not
appropriate in that case.
https://github.com/openai/codex/pull/1086 is a work-in-progress to make
Linux sandboxing work more like Seatbelt where, for the command we want
to sandbox, we build up the command and then hand it, and some sandbox
configuration flags, to another command to set up the sandbox and then
run it.
In the case of Seatbelt, macOS provides this helper binary and provides
it at `/usr/bin/sandbox-exec`. For Linux, we have to build our own and
pass it through (which is what #1086 does), so this makes the new
`codex_linux_sandbox_exe` available on `Config` so that it will later be
available in `exec.rs` when we need it in #1086.
To date, when handling `shell` and `local_shell` tool calls, we were
spawning new processes using the environment inherited from the Codex
process itself. This means that the sensitive `OPENAI_API_KEY` that
Codex needs to talk to OpenAI models was made available to everything
run by `shell` and `local_shell`. While there are cases where that might
be useful, it does not seem like a good default.
This PR introduces a complex `shell_environment_policy` config option to
control the `env` used with these tool calls. It is inevitably a bit
complex so that it is possible to override individual components of the
policy so without having to restate the entire thing.
Details are in the updated `README.md` in this PR, but here is the
relevant bit that explains the individual fields of
`shell_environment_policy`:
| Field | Type | Default | Description |
| ------------------------- | -------------------------- | ------- |
-----------------------------------------------------------------------------------------------------------------------------------------------
|
| `inherit` | string | `core` | Starting template for the
environment:<br>`core` (`HOME`, `PATH`, `USER`, …), `all` (clone full
parent env), or `none` (start empty). |
| `ignore_default_excludes` | boolean | `false` | When `false`, Codex
removes any var whose **name** contains `KEY`, `SECRET`, or `TOKEN`
(case-insensitive) before other rules run. |
| `exclude` | array<string> | `[]` | Case-insensitive glob
patterns to drop after the default filter.<br>Examples: `"AWS_*"`,
`"AZURE_*"`. |
| `set` | table<string,string> | `{}` | Explicit key/value
overrides or additions – always win over inherited values. |
| `include_only` | array<string> | `[]` | If non-empty, a
whitelist of patterns; only variables that match _one_ pattern survive
the final step. (Generally used with `inherit = "all"`.) |
In particular, note that the default is `inherit = "core"`, so:
* if you have extra env variables that you want to inherit from the
parent process, use `inherit = "all"` and then specify `include_only`
* if you have extra env variables where you want to hardcode the values,
the default `inherit = "core"` will work fine, but then you need to
specify `set`
This configuration is not battle-tested, so we will probably still have
to play with it a bit. `core/src/exec_env.rs` has the critical business
logic as well as unit tests.
Though if nothing else, previous to this change:
```
$ cargo run --bin codex -- debug seatbelt -- printenv OPENAI_API_KEY
# ...prints OPENAI_API_KEY...
```
But after this change it does not print anything (as desired).
One final thing to call out about this PR is that the
`configure_command!` macro we use in `core/src/exec.rs` has to do some
complex logic with respect to how it builds up the `env` for the process
being spawned under Landlock/seccomp. Specifically, doing
`cmd.env_clear()` followed by `cmd.envs(&$env_map)` (which is arguably
the most intuitive way to do it) caused the Landlock unit tests to fail
because the processes spawned by the unit tests started failing in
unexpected ways! If we forgo `env_clear()` in favor of updating env vars
one at a time, the tests still pass. The comment in the code talks about
this a bit, and while I would like to investigate this more, I need to
move on for the moment, but I do plan to come back to it to fully
understand what is going on. For example, this suggests that we might
not be able to spawn a C program that calls `env_clear()`, which would
be...weird. We may still have to fiddle with our Landlock config if that
is the case.
Previously, running Codex as an MCP server required a standalone binary
in our Cargo workspace, but this PR makes it available as a subcommand
(`mcp`) of the main CLI.
Ran this with:
```
RUST_LOG=debug npx @modelcontextprotocol/inspector cargo run --bin codex -- mcp
```
and verified it worked as expected in the inspector at
`http://127.0.0.1:6274/`.
When using Codex to develop Codex itself, I noticed that sometimes it
would try to add `#[ignore]` to the following tests:
```
keeps_previous_response_id_between_tasks()
retries_on_early_close()
```
Both of these tests start a `MockServer` that launches an HTTP server on
an ephemeral port and requires network access to hit it, which the
Seatbelt policy associated with `--full-auto` correctly denies. If I
wasn't paying attention to the code that Codex was generating, one of
these `#[ignore]` annotations could have slipped into the codebase,
effectively disabling the test for everyone.
To that end, this PR enables an experimental environment variable named
`CODEX_SANDBOX_NETWORK_DISABLED` that is set to `1` if the
`SandboxPolicy` used to spawn the process does not have full network
access. I say it is "experimental" because I'm not convinced this API is
quite right, but we need to start somewhere. (It might be more
appropriate to have an env var like `CODEX_SANDBOX=full-auto`, but the
challenge is that our newer `SandboxPolicy` abstraction does not map to
a simple set of enums like in the TypeScript CLI.)
We leverage this new functionality by adding the following code to the
aforementioned tests as a way to "dynamically disable" them:
```rust
if std::env::var(CODEX_SANDBOX_NETWORK_DISABLED_ENV_VAR).is_ok() {
println!(
"Skipping test because it cannot execute when network is disabled in a Codex sandbox."
);
return;
}
```
We can use the `debug seatbelt --full-auto` command to verify that
`cargo test` fails when run under Seatbelt prior to this change:
```
$ cargo run --bin codex -- debug seatbelt --full-auto -- cargo test
---- keeps_previous_response_id_between_tasks stdout ----
thread 'keeps_previous_response_id_between_tasks' panicked at /Users/mbolin/.cargo/registry/src/index.crates.io-1949cf8c6b5b557f/wiremock-0.6.3/src/mock_server/builder.rs:107:46:
Failed to bind an OS port for a mock server.: Os { code: 1, kind: PermissionDenied, message: "Operation not permitted" }
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
failures:
keeps_previous_response_id_between_tasks
test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s
error: test failed, to rerun pass `-p codex-core --test previous_response_id`
```
Though after this change, the above command succeeds! This means that,
going forward, when Codex operates on Codex itself, when it runs `cargo
test`, only "real failures" should cause the command to fail.
As part of this change, I decided to tighten up the codepaths for
running `exec()` for shell tool calls. In particular, we do it in `core`
for the main Codex business logic itself, but we also expose this logic
via `debug` subcommands in the CLI in the `cli` crate. The logic for the
`debug` subcommands was not quite as faithful to the true business logic
as I liked, so I:
* refactored a bit of the Linux code, splitting `linux.rs` into
`linux_exec.rs` and `landlock.rs` in the `core` crate.
* gating less code behind `#[cfg(target_os = "linux")]` because such
code does not get built by default when I develop on Mac, which means I
either have to build the code in Docker or wait for CI signal
* introduced `macro_rules! configure_command` in `exec.rs` so we can
have both sync and async versions of this code. The synchronous version
seems more appropriate for straight threads or potentially fork/exec.
Some effects of this change:
- New formatting changes across many files. No functionality changes
should occur from that.
- Calls to `set_env` are considered unsafe, since this only happens in
tests we wrap them in `unsafe` blocks
@oai-ragona and I discussed it, and we feel the REPL crate has served
its purpose, so we're going to delete the code and future archaeologists
can find it in Git history.