Files
llmx/codex-rs/core/src/conversation_history.rs

121 lines
3.4 KiB
Rust
Raw Normal View History

use codex_protocol::models::ResponseItem;
/// Transcript of conversation history
#[derive(Debug, Clone, Default)]
feat: support the chat completions API in the Rust CLI (#862) This is a substantial PR to add support for the chat completions API, which in turn makes it possible to use non-OpenAI model providers (just like in the TypeScript CLI): * It moves a number of structs from `client.rs` to `client_common.rs` so they can be shared. * It introduces support for the chat completions API in `chat_completions.rs`. * It updates `ModelProviderInfo` so that `env_key` is `Option<String>` instead of `String` (for e.g., ollama) and adds a `wire_api` field * It updates `client.rs` to choose between `stream_responses()` and `stream_chat_completions()` based on the `wire_api` for the `ModelProviderInfo` * It updates the `exec` and TUI CLIs to no longer fail if the `OPENAI_API_KEY` environment variable is not set * It updates the TUI so that `EventMsg::Error` is displayed more prominently when it occurs, particularly now that it is important to alert users to the `CodexErr::EnvVar` variant. * `CodexErr::EnvVar` was updated to include an optional `instructions` field so we can preserve the behavior where we direct users to https://platform.openai.com if `OPENAI_API_KEY` is not set. * Cleaned up the "welcome message" in the TUI to ensure the model provider is displayed. * Updated the docs in `codex-rs/README.md`. To exercise the chat completions API from OpenAI models, I added the following to my `config.toml`: ```toml model = "gpt-4o" model_provider = "openai-chat-completions" [model_providers.openai-chat-completions] name = "OpenAI using Chat Completions" base_url = "https://api.openai.com/v1" env_key = "OPENAI_API_KEY" wire_api = "chat" ``` Though to test a non-OpenAI provider, I installed ollama with mistral locally on my Mac because ChatGPT said that would be a good match for my hardware: ```shell brew install ollama ollama serve ollama pull mistral ``` Then I added the following to my `~/.codex/config.toml`: ```toml model = "mistral" model_provider = "ollama" ``` Note this code could certainly use more test coverage, but I want to get this in so folks can start playing with it. For reference, I believe https://github.com/openai/codex/pull/247 was roughly the comparable PR on the TypeScript side.
2025-05-08 21:46:06 -07:00
pub(crate) struct ConversationHistory {
/// The oldest items are at the beginning of the vector.
items: Vec<ResponseItem>,
}
feat: support the chat completions API in the Rust CLI (#862) This is a substantial PR to add support for the chat completions API, which in turn makes it possible to use non-OpenAI model providers (just like in the TypeScript CLI): * It moves a number of structs from `client.rs` to `client_common.rs` so they can be shared. * It introduces support for the chat completions API in `chat_completions.rs`. * It updates `ModelProviderInfo` so that `env_key` is `Option<String>` instead of `String` (for e.g., ollama) and adds a `wire_api` field * It updates `client.rs` to choose between `stream_responses()` and `stream_chat_completions()` based on the `wire_api` for the `ModelProviderInfo` * It updates the `exec` and TUI CLIs to no longer fail if the `OPENAI_API_KEY` environment variable is not set * It updates the TUI so that `EventMsg::Error` is displayed more prominently when it occurs, particularly now that it is important to alert users to the `CodexErr::EnvVar` variant. * `CodexErr::EnvVar` was updated to include an optional `instructions` field so we can preserve the behavior where we direct users to https://platform.openai.com if `OPENAI_API_KEY` is not set. * Cleaned up the "welcome message" in the TUI to ensure the model provider is displayed. * Updated the docs in `codex-rs/README.md`. To exercise the chat completions API from OpenAI models, I added the following to my `config.toml`: ```toml model = "gpt-4o" model_provider = "openai-chat-completions" [model_providers.openai-chat-completions] name = "OpenAI using Chat Completions" base_url = "https://api.openai.com/v1" env_key = "OPENAI_API_KEY" wire_api = "chat" ``` Though to test a non-OpenAI provider, I installed ollama with mistral locally on my Mac because ChatGPT said that would be a good match for my hardware: ```shell brew install ollama ollama serve ollama pull mistral ``` Then I added the following to my `~/.codex/config.toml`: ```toml model = "mistral" model_provider = "ollama" ``` Note this code could certainly use more test coverage, but I want to get this in so folks can start playing with it. For reference, I believe https://github.com/openai/codex/pull/247 was roughly the comparable PR on the TypeScript side.
2025-05-08 21:46:06 -07:00
impl ConversationHistory {
pub(crate) fn new() -> Self {
Self { items: Vec::new() }
}
/// Returns a clone of the contents in the transcript.
pub(crate) fn contents(&self) -> Vec<ResponseItem> {
self.items.clone()
}
/// `items` is ordered from oldest to newest.
pub(crate) fn record_items<I>(&mut self, items: I)
where
I: IntoIterator,
I::Item: std::ops::Deref<Target = ResponseItem>,
{
for item in items {
if !is_api_message(&item) {
continue;
}
self.items.push(item.clone());
}
}
pub(crate) fn replace(&mut self, items: Vec<ResponseItem>) {
self.items = items;
}
}
/// Anything that is not a system message or "reasoning" message is considered
/// an API message.
fn is_api_message(message: &ResponseItem) -> bool {
match message {
ResponseItem::Message { role, .. } => role.as_str() != "system",
ResponseItem::FunctionCallOutput { .. }
| ResponseItem::FunctionCall { .. }
| ResponseItem::CustomToolCall { .. }
| ResponseItem::CustomToolCallOutput { .. }
| ResponseItem::LocalShellCall { .. }
| ResponseItem::Reasoning { .. }
| ResponseItem::WebSearchCall { .. } => true,
ResponseItem::Other => false,
}
}
#[cfg(test)]
mod tests {
use super::*;
use codex_protocol::models::ContentItem;
fn assistant_msg(text: &str) -> ResponseItem {
ResponseItem::Message {
id: None,
role: "assistant".to_string(),
content: vec![ContentItem::OutputText {
text: text.to_string(),
}],
}
}
fn user_msg(text: &str) -> ResponseItem {
ResponseItem::Message {
id: None,
role: "user".to_string(),
content: vec![ContentItem::OutputText {
text: text.to_string(),
}],
}
}
#[test]
fn filters_non_api_messages() {
let mut h = ConversationHistory::default();
// System message is not an API message; Other is ignored.
let system = ResponseItem::Message {
id: None,
role: "system".to_string(),
content: vec![ContentItem::OutputText {
text: "ignored".to_string(),
}],
};
h.record_items([&system, &ResponseItem::Other]);
// User and assistant should be retained.
let u = user_msg("hi");
let a = assistant_msg("hello");
h.record_items([&u, &a]);
let items = h.contents();
assert_eq!(
items,
vec![
ResponseItem::Message {
id: None,
role: "user".to_string(),
content: vec![ContentItem::OutputText {
text: "hi".to_string()
}]
},
ResponseItem::Message {
id: None,
role: "assistant".to_string(),
content: vec![ContentItem::OutputText {
text: "hello".to_string()
}]
}
]
);
}
}