feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
//! Defines the protocol for a Codex session between a client and an agent.
|
|
|
|
|
|
//!
|
|
|
|
|
|
//! Uses a SQ (Submission Queue) / EQ (Event Queue) pattern to asynchronously communicate
|
|
|
|
|
|
//! between user and agent.
|
|
|
|
|
|
|
|
|
|
|
|
use std::collections::HashMap;
|
2025-07-25 01:56:40 -07:00
|
|
|
|
use std::fmt;
|
2025-05-04 10:57:12 -07:00
|
|
|
|
use std::path::Path;
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
use std::path::PathBuf;
|
2025-07-30 10:05:40 -07:00
|
|
|
|
use std::str::FromStr;
|
|
|
|
|
|
use std::time::Duration;
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
feat: support mcp_servers in config.toml (#829)
This adds initial support for MCP servers in the style of Claude Desktop
and Cursor. Note this PR is the bare minimum to get things working end
to end: all configured MCP servers are launched every time Codex is run,
there is no recovery for MCP servers that crash, etc.
(Also, I took some shortcuts to change some fields of `Session` to be
`pub(crate)`, which also means there are circular deps between
`codex.rs` and `mcp_tool_call.rs`, but I will clean that up in a
subsequent PR.)
`codex-rs/README.md` is updated as part of this PR to explain how to use
this feature. There is a bit of plumbing to route the new settings from
`Config` to the business logic in `codex.rs`. The most significant
chunks for new code are in `mcp_connection_manager.rs` (which defines
the `McpConnectionManager` struct) and `mcp_tool_call.rs`, which is
responsible for tool calls.
This PR also introduces new `McpToolCallBegin` and `McpToolCallEnd`
event types to the protocol, but does not add any handlers for them.
(See https://github.com/openai/codex/pull/836 for initial usage.)
To test, I added the following to my `~/.codex/config.toml`:
```toml
# Local build of https://github.com/hideya/mcp-server-weather-js
[mcp_servers.weather]
command = "/Users/mbolin/code/mcp-server-weather-js/dist/index.js"
args = []
```
And then I ran the following:
```
codex-rs$ cargo run --bin codex exec 'what is the weather in san francisco'
[2025-05-06T22:40:05] Task started: 1
[2025-05-06T22:40:18] Agent message: Here’s the latest National Weather Service forecast for San Francisco (downtown, near 37.77° N, 122.42° W):
This Afternoon (Tue):
• Sunny, high near 69 °F
• West-southwest wind around 12 mph
Tonight:
• Partly cloudy, low around 52 °F
• SW wind 7–10 mph
...
```
Note that Codex itself is not able to make network calls, so it would
not normally be able to get live weather information like this. However,
the weather MCP is [currently] not run under the Codex sandbox, so it is
able to hit `api.weather.gov` and fetch current weather information.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/829).
* #836
* __->__ #829
2025-05-06 15:47:59 -07:00
|
|
|
|
use mcp_types::CallToolResult;
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
use serde::Deserialize;
|
|
|
|
|
|
use serde::Serialize;
|
2025-08-01 13:04:34 -07:00
|
|
|
|
use serde_bytes::ByteBuf;
|
2025-07-24 23:17:57 +02:00
|
|
|
|
use strum_macros::Display;
|
2025-05-13 19:22:16 -07:00
|
|
|
|
use uuid::Uuid;
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
feat: make reasoning effort/summaries configurable (#1199)
Previous to this PR, we always set `reasoning` when making a request
using the Responses API:
https://github.com/openai/codex/blob/d7245cbbc9d8ff5446da45e5951761103492476d/codex-rs/core/src/client.rs#L108-L111
Though if you tried to use the Rust CLI with `--model gpt-4.1`, this
would fail with:
```shell
"Unsupported parameter: 'reasoning.effort' is not supported with this model."
```
We take a cue from the TypeScript CLI, which does a check on the model
name:
https://github.com/openai/codex/blob/d7245cbbc9d8ff5446da45e5951761103492476d/codex-cli/src/utils/agent/agent-loop.ts#L786-L789
This PR does a similar check, though also adds support for the following
config options:
```
model_reasoning_effort = "low" | "medium" | "high" | "none"
model_reasoning_summary = "auto" | "concise" | "detailed" | "none"
```
This way, if you have a model whose name happens to start with `"o"` (or
`"codex"`?), you can set these to `"none"` to explicitly disable
reasoning, if necessary. (That said, it seems unlikely anyone would use
the Responses API with non-OpenAI models, but we provide an escape
hatch, anyway.)
This PR also updates both the TUI and `codex exec` to show `reasoning
effort` and `reasoning summaries` in the header.
2025-06-02 16:01:34 -07:00
|
|
|
|
use crate::config_types::ReasoningEffort as ReasoningEffortConfig;
|
|
|
|
|
|
use crate::config_types::ReasoningSummary as ReasoningSummaryConfig;
|
feat: record messages from user in ~/.codex/history.jsonl (#939)
This is a large change to support a "history" feature like you would
expect in a shell like Bash.
History events are recorded in `$CODEX_HOME/history.jsonl`. Because it
is a JSONL file, it is straightforward to append new entries (as opposed
to the TypeScript file that uses `$CODEX_HOME/history.json`, so to be
valid JSON, each new entry entails rewriting the entire file). Because
it is possible for there to be multiple instances of Codex CLI writing
to `history.jsonl` at once, we use advisory file locking when working
with `history.jsonl` in `codex-rs/core/src/message_history.rs`.
Because we believe history is a sufficiently useful feature, we enable
it by default. Though to provide some safety, we set the file
permissions of `history.jsonl` to be `o600` so that other users on the
system cannot read the user's history. We do not yet support a default
list of `SENSITIVE_PATTERNS` as the TypeScript CLI does:
https://github.com/openai/codex/blob/3fdf9df1335ac9501e3fb0e61715359145711e8b/codex-cli/src/utils/storage/command-history.ts#L10-L17
We are going to take a more conservative approach to this list in the
Rust CLI. For example, while `/\b[A-Za-z0-9-_]{20,}\b/` might exclude
sensitive information like API tokens, it would also exclude valuable
information such as references to Git commits.
As noted in the updated documentation, users can opt-out of history by
adding the following to `config.toml`:
```toml
[history]
persistence = "none"
```
Because `history.jsonl` could, in theory, be quite large, we take a[n
arguably overly pedantic] approach in reading history entries into
memory. Specifically, we start by telling the client the current number
of entries in the history file (`history_entry_count`) as well as the
inode (`history_log_id`) of `history.jsonl` (see the new fields on
`SessionConfiguredEvent`).
The client is responsible for keeping new entries in memory to create a
"local history," but if the user hits up enough times to go "past" the
end of local history, then the client should use the new
`GetHistoryEntryRequest` in the protocol to fetch older entries.
Specifically, it should pass the `history_log_id` it was given
originally and work backwards from `history_entry_count`. (It should
really fetch history in batches rather than one-at-a-time, but that is
something we can improve upon in subsequent PRs.)
The motivation behind this crazy scheme is that it is designed to defend
against:
* The `history.jsonl` being truncated during the session such that the
index into the history is no longer consistent with what had been read
up to that point. We do not yet have logic to enforce a `max_bytes` for
`history.jsonl`, but once we do, we will aspire to implement it in a way
that should result in a new inode for the file on most systems.
* New items from concurrent Codex CLI sessions amending to the history.
Because, in absence of truncation, `history.jsonl` is an append-only
log, so long as the client reads backwards from `history_entry_count`,
it should always get a consistent view of history. (That said, it will
not be able to read _new_ commands from concurrent sessions, but perhaps
we will introduce a `/` command to reload latest history or something
down the road.)
Admittedly, my testing of this feature thus far has been fairly light. I
expect we will find bugs and introduce enhancements/fixes going forward.
2025-05-15 16:26:23 -07:00
|
|
|
|
use crate::message_history::HistoryEntry;
|
2025-05-07 17:38:28 -07:00
|
|
|
|
use crate::model_provider_info::ModelProviderInfo;
|
2025-07-29 11:22:02 -07:00
|
|
|
|
use crate::plan_tool::UpdatePlanArgs;
|
2025-05-07 17:38:28 -07:00
|
|
|
|
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
/// Submission Queue Entry - requests from user
|
|
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct Submission {
|
|
|
|
|
|
/// Unique id for this Submission to correlate with Events
|
|
|
|
|
|
pub id: String,
|
|
|
|
|
|
/// Payload
|
|
|
|
|
|
pub op: Op,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Submission operation
|
feat: record messages from user in ~/.codex/history.jsonl (#939)
This is a large change to support a "history" feature like you would
expect in a shell like Bash.
History events are recorded in `$CODEX_HOME/history.jsonl`. Because it
is a JSONL file, it is straightforward to append new entries (as opposed
to the TypeScript file that uses `$CODEX_HOME/history.json`, so to be
valid JSON, each new entry entails rewriting the entire file). Because
it is possible for there to be multiple instances of Codex CLI writing
to `history.jsonl` at once, we use advisory file locking when working
with `history.jsonl` in `codex-rs/core/src/message_history.rs`.
Because we believe history is a sufficiently useful feature, we enable
it by default. Though to provide some safety, we set the file
permissions of `history.jsonl` to be `o600` so that other users on the
system cannot read the user's history. We do not yet support a default
list of `SENSITIVE_PATTERNS` as the TypeScript CLI does:
https://github.com/openai/codex/blob/3fdf9df1335ac9501e3fb0e61715359145711e8b/codex-cli/src/utils/storage/command-history.ts#L10-L17
We are going to take a more conservative approach to this list in the
Rust CLI. For example, while `/\b[A-Za-z0-9-_]{20,}\b/` might exclude
sensitive information like API tokens, it would also exclude valuable
information such as references to Git commits.
As noted in the updated documentation, users can opt-out of history by
adding the following to `config.toml`:
```toml
[history]
persistence = "none"
```
Because `history.jsonl` could, in theory, be quite large, we take a[n
arguably overly pedantic] approach in reading history entries into
memory. Specifically, we start by telling the client the current number
of entries in the history file (`history_entry_count`) as well as the
inode (`history_log_id`) of `history.jsonl` (see the new fields on
`SessionConfiguredEvent`).
The client is responsible for keeping new entries in memory to create a
"local history," but if the user hits up enough times to go "past" the
end of local history, then the client should use the new
`GetHistoryEntryRequest` in the protocol to fetch older entries.
Specifically, it should pass the `history_log_id` it was given
originally and work backwards from `history_entry_count`. (It should
really fetch history in batches rather than one-at-a-time, but that is
something we can improve upon in subsequent PRs.)
The motivation behind this crazy scheme is that it is designed to defend
against:
* The `history.jsonl` being truncated during the session such that the
index into the history is no longer consistent with what had been read
up to that point. We do not yet have logic to enforce a `max_bytes` for
`history.jsonl`, but once we do, we will aspire to implement it in a way
that should result in a new inode for the file on most systems.
* New items from concurrent Codex CLI sessions amending to the history.
Because, in absence of truncation, `history.jsonl` is an append-only
log, so long as the client reads backwards from `history_entry_count`,
it should always get a consistent view of history. (That said, it will
not be able to read _new_ commands from concurrent sessions, but perhaps
we will introduce a `/` command to reload latest history or something
down the road.)
Admittedly, my testing of this feature thus far has been fairly light. I
expect we will find bugs and introduce enhancements/fixes going forward.
2025-05-15 16:26:23 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq)]
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
#[serde(tag = "type", rename_all = "snake_case")]
|
2025-05-08 21:46:06 -07:00
|
|
|
|
#[allow(clippy::large_enum_variant)]
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
#[non_exhaustive]
|
|
|
|
|
|
pub enum Op {
|
|
|
|
|
|
/// Configure the model session.
|
|
|
|
|
|
ConfigureSession {
|
2025-05-07 17:38:28 -07:00
|
|
|
|
/// Provider identifier ("openai", "openrouter", ...).
|
|
|
|
|
|
provider: ModelProviderInfo,
|
|
|
|
|
|
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
/// If not specified, server will use its default model.
|
2025-04-27 21:47:50 -07:00
|
|
|
|
model: String,
|
feat: make reasoning effort/summaries configurable (#1199)
Previous to this PR, we always set `reasoning` when making a request
using the Responses API:
https://github.com/openai/codex/blob/d7245cbbc9d8ff5446da45e5951761103492476d/codex-rs/core/src/client.rs#L108-L111
Though if you tried to use the Rust CLI with `--model gpt-4.1`, this
would fail with:
```shell
"Unsupported parameter: 'reasoning.effort' is not supported with this model."
```
We take a cue from the TypeScript CLI, which does a check on the model
name:
https://github.com/openai/codex/blob/d7245cbbc9d8ff5446da45e5951761103492476d/codex-cli/src/utils/agent/agent-loop.ts#L786-L789
This PR does a similar check, though also adds support for the following
config options:
```
model_reasoning_effort = "low" | "medium" | "high" | "none"
model_reasoning_summary = "auto" | "concise" | "detailed" | "none"
```
This way, if you have a model whose name happens to start with `"o"` (or
`"codex"`?), you can set these to `"none"` to explicitly disable
reasoning, if necessary. (That said, it seems unlikely anyone would use
the Responses API with non-OpenAI models, but we provide an escape
hatch, anyway.)
This PR also updates both the TUI and `codex exec` to show `reasoning
effort` and `reasoning summaries` in the header.
2025-06-02 16:01:34 -07:00
|
|
|
|
|
|
|
|
|
|
model_reasoning_effort: ReasoningEffortConfig,
|
|
|
|
|
|
model_reasoning_summary: ReasoningSummaryConfig,
|
|
|
|
|
|
|
2025-07-22 09:42:22 -07:00
|
|
|
|
/// Model instructions that are appended to the base instructions.
|
|
|
|
|
|
user_instructions: Option<String>,
|
|
|
|
|
|
|
|
|
|
|
|
/// Base instructions override.
|
|
|
|
|
|
base_instructions: Option<String>,
|
|
|
|
|
|
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
/// When to escalate for approval for execution
|
|
|
|
|
|
approval_policy: AskForApproval,
|
|
|
|
|
|
/// How to sandbox commands executed in the system
|
|
|
|
|
|
sandbox_policy: SandboxPolicy,
|
2025-04-25 12:08:18 -07:00
|
|
|
|
/// Disable server-side response storage (send full context each request)
|
|
|
|
|
|
#[serde(default)]
|
|
|
|
|
|
disable_response_storage: bool,
|
feat: configurable notifications in the Rust CLI (#793)
With this change, you can specify a program that will be executed to get
notified about events generated by Codex. The notification info will be
packaged as a JSON object. The supported notification types are defined
by the `UserNotification` enum introduced in this PR. Initially, it
contains only one variant, `AgentTurnComplete`:
```rust
pub(crate) enum UserNotification {
#[serde(rename_all = "kebab-case")]
AgentTurnComplete {
turn_id: String,
/// Messages that the user sent to the agent to initiate the turn.
input_messages: Vec<String>,
/// The last message sent by the assistant in the turn.
last_assistant_message: Option<String>,
},
}
```
This is intended to support the common case when a "turn" ends, which
often means it is now your chance to give Codex further instructions.
For example, I have the following in my `~/.codex/config.toml`:
```toml
notify = ["python3", "/Users/mbolin/.codex/notify.py"]
```
I created my own custom notifier script that calls out to
[terminal-notifier](https://github.com/julienXX/terminal-notifier) to
show a desktop push notification on macOS. Contents of `notify.py`:
```python
#!/usr/bin/env python3
import json
import subprocess
import sys
def main() -> int:
if len(sys.argv) != 2:
print("Usage: notify.py <NOTIFICATION_JSON>")
return 1
try:
notification = json.loads(sys.argv[1])
except json.JSONDecodeError:
return 1
match notification_type := notification.get("type"):
case "agent-turn-complete":
assistant_message = notification.get("last-assistant-message")
if assistant_message:
title = f"Codex: {assistant_message}"
else:
title = "Codex: Turn Complete!"
input_messages = notification.get("input_messages", [])
message = " ".join(input_messages)
title += message
case _:
print(f"not sending a push notification for: {notification_type}")
return 0
subprocess.check_output(
[
"terminal-notifier",
"-title",
title,
"-message",
message,
"-group",
"codex",
"-ignoreDnD",
"-activate",
"com.googlecode.iterm2",
]
)
return 0
if __name__ == "__main__":
sys.exit(main())
```
For reference, here are related PRs that tried to add this functionality
to the TypeScript version of the Codex CLI:
* https://github.com/openai/codex/pull/160
* https://github.com/openai/codex/pull/498
2025-05-02 19:48:13 -07:00
|
|
|
|
|
|
|
|
|
|
/// Optional external notifier command tokens. Present only when the
|
|
|
|
|
|
/// client wants the agent to spawn a program after each completed
|
|
|
|
|
|
/// turn.
|
|
|
|
|
|
#[serde(skip_serializing_if = "Option::is_none")]
|
|
|
|
|
|
#[serde(default)]
|
|
|
|
|
|
notify: Option<Vec<String>>,
|
2025-05-04 10:57:12 -07:00
|
|
|
|
|
|
|
|
|
|
/// Working directory that should be treated as the *root* of the
|
|
|
|
|
|
/// session. All relative paths supplied by the model as well as the
|
|
|
|
|
|
/// execution sandbox are resolved against this directory **instead**
|
|
|
|
|
|
/// of the process-wide current working directory. CLI front-ends are
|
|
|
|
|
|
/// expected to expand this to an absolute path before sending the
|
|
|
|
|
|
/// `ConfigureSession` operation so that the business-logic layer can
|
|
|
|
|
|
/// operate deterministically.
|
|
|
|
|
|
cwd: std::path::PathBuf,
|
2025-07-18 17:04:04 -07:00
|
|
|
|
|
|
|
|
|
|
/// Path to a rollout file to resume from.
|
|
|
|
|
|
#[serde(skip_serializing_if = "Option::is_none")]
|
|
|
|
|
|
resume_path: Option<std::path::PathBuf>,
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
},
|
|
|
|
|
|
|
|
|
|
|
|
/// Abort current task.
|
|
|
|
|
|
/// This server sends no corresponding Event
|
|
|
|
|
|
Interrupt,
|
|
|
|
|
|
|
|
|
|
|
|
/// Input from the user
|
|
|
|
|
|
UserInput {
|
|
|
|
|
|
/// User input items, see `InputItem`
|
|
|
|
|
|
items: Vec<InputItem>,
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
|
|
|
|
/// Approve a command execution
|
|
|
|
|
|
ExecApproval {
|
|
|
|
|
|
/// The id of the submission we are approving
|
|
|
|
|
|
id: String,
|
|
|
|
|
|
/// The user's decision in response to the request.
|
|
|
|
|
|
decision: ReviewDecision,
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
|
|
|
|
/// Approve a code patch
|
|
|
|
|
|
PatchApproval {
|
|
|
|
|
|
/// The id of the submission we are approving
|
|
|
|
|
|
id: String,
|
|
|
|
|
|
/// The user's decision in response to the request.
|
|
|
|
|
|
decision: ReviewDecision,
|
|
|
|
|
|
},
|
feat: record messages from user in ~/.codex/history.jsonl (#939)
This is a large change to support a "history" feature like you would
expect in a shell like Bash.
History events are recorded in `$CODEX_HOME/history.jsonl`. Because it
is a JSONL file, it is straightforward to append new entries (as opposed
to the TypeScript file that uses `$CODEX_HOME/history.json`, so to be
valid JSON, each new entry entails rewriting the entire file). Because
it is possible for there to be multiple instances of Codex CLI writing
to `history.jsonl` at once, we use advisory file locking when working
with `history.jsonl` in `codex-rs/core/src/message_history.rs`.
Because we believe history is a sufficiently useful feature, we enable
it by default. Though to provide some safety, we set the file
permissions of `history.jsonl` to be `o600` so that other users on the
system cannot read the user's history. We do not yet support a default
list of `SENSITIVE_PATTERNS` as the TypeScript CLI does:
https://github.com/openai/codex/blob/3fdf9df1335ac9501e3fb0e61715359145711e8b/codex-cli/src/utils/storage/command-history.ts#L10-L17
We are going to take a more conservative approach to this list in the
Rust CLI. For example, while `/\b[A-Za-z0-9-_]{20,}\b/` might exclude
sensitive information like API tokens, it would also exclude valuable
information such as references to Git commits.
As noted in the updated documentation, users can opt-out of history by
adding the following to `config.toml`:
```toml
[history]
persistence = "none"
```
Because `history.jsonl` could, in theory, be quite large, we take a[n
arguably overly pedantic] approach in reading history entries into
memory. Specifically, we start by telling the client the current number
of entries in the history file (`history_entry_count`) as well as the
inode (`history_log_id`) of `history.jsonl` (see the new fields on
`SessionConfiguredEvent`).
The client is responsible for keeping new entries in memory to create a
"local history," but if the user hits up enough times to go "past" the
end of local history, then the client should use the new
`GetHistoryEntryRequest` in the protocol to fetch older entries.
Specifically, it should pass the `history_log_id` it was given
originally and work backwards from `history_entry_count`. (It should
really fetch history in batches rather than one-at-a-time, but that is
something we can improve upon in subsequent PRs.)
The motivation behind this crazy scheme is that it is designed to defend
against:
* The `history.jsonl` being truncated during the session such that the
index into the history is no longer consistent with what had been read
up to that point. We do not yet have logic to enforce a `max_bytes` for
`history.jsonl`, but once we do, we will aspire to implement it in a way
that should result in a new inode for the file on most systems.
* New items from concurrent Codex CLI sessions amending to the history.
Because, in absence of truncation, `history.jsonl` is an append-only
log, so long as the client reads backwards from `history_entry_count`,
it should always get a consistent view of history. (That said, it will
not be able to read _new_ commands from concurrent sessions, but perhaps
we will introduce a `/` command to reload latest history or something
down the road.)
Admittedly, my testing of this feature thus far has been fairly light. I
expect we will find bugs and introduce enhancements/fixes going forward.
2025-05-15 16:26:23 -07:00
|
|
|
|
|
|
|
|
|
|
/// Append an entry to the persistent cross-session message history.
|
|
|
|
|
|
///
|
|
|
|
|
|
/// Note the entry is not guaranteed to be logged if the user has
|
|
|
|
|
|
/// history disabled, it matches the list of "sensitive" patterns, etc.
|
|
|
|
|
|
AddToHistory {
|
|
|
|
|
|
/// The message text to be stored.
|
|
|
|
|
|
text: String,
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
|
|
|
|
/// Request a single history entry identified by `log_id` + `offset`.
|
|
|
|
|
|
GetHistoryEntryRequest { offset: usize, log_id: u64 },
|
2025-07-23 15:03:26 -07:00
|
|
|
|
|
2025-07-31 21:34:32 -07:00
|
|
|
|
/// Request the agent to summarize the current conversation context.
|
|
|
|
|
|
/// The agent will use its existing context (either conversation history or previous response id)
|
|
|
|
|
|
/// to generate a summary which will be returned as an AgentMessage event.
|
|
|
|
|
|
Compact,
|
2025-07-23 15:03:26 -07:00
|
|
|
|
/// Request to shut down codex instance.
|
|
|
|
|
|
Shutdown,
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
}
|
|
|
|
|
|
|
2025-06-24 22:19:21 -07:00
|
|
|
|
/// Determines the conditions under which the user is consulted to approve
|
|
|
|
|
|
/// running the command proposed by Codex.
|
2025-07-24 23:17:57 +02:00
|
|
|
|
#[derive(Debug, Clone, Copy, Default, PartialEq, Eq, Hash, Serialize, Deserialize, Display)]
|
2025-04-27 21:47:50 -07:00
|
|
|
|
#[serde(rename_all = "kebab-case")]
|
2025-07-24 23:17:57 +02:00
|
|
|
|
#[strum(serialize_all = "kebab-case")]
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
pub enum AskForApproval {
|
2025-06-24 22:19:21 -07:00
|
|
|
|
/// Under this policy, only "known safe" commands—as determined by
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
/// `is_safe_command()`—that **only read files** are auto‑approved.
|
|
|
|
|
|
/// Everything else will ask the user to approve.
|
2025-04-27 21:47:50 -07:00
|
|
|
|
#[default]
|
2025-06-24 22:19:21 -07:00
|
|
|
|
#[serde(rename = "untrusted")]
|
2025-07-24 23:17:57 +02:00
|
|
|
|
#[strum(serialize = "untrusted")]
|
2025-06-25 12:26:13 -07:00
|
|
|
|
UnlessTrusted,
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
|
|
|
|
|
/// *All* commands are auto‑approved, but they are expected to run inside a
|
|
|
|
|
|
/// sandbox where network access is disabled and writes are confined to a
|
|
|
|
|
|
/// specific set of paths. If the command fails, it will be escalated to
|
|
|
|
|
|
/// the user to approve execution without a sandbox.
|
|
|
|
|
|
OnFailure,
|
|
|
|
|
|
|
|
|
|
|
|
/// Never ask the user to approve commands. Failures are immediately returned
|
|
|
|
|
|
/// to the model, and never escalated to the user for approval.
|
|
|
|
|
|
Never,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
feat: redesign sandbox config (#1373)
This is a major redesign of how sandbox configuration works and aims to
fix https://github.com/openai/codex/issues/1248. Specifically, it
replaces `sandbox_permissions` in `config.toml` (and the
`-s`/`--sandbox-permission` CLI flags) with a "table" with effectively
three variants:
```toml
# Safest option: full disk is read-only, but writes and network access are disallowed.
[sandbox]
mode = "read-only"
# The cwd of the Codex task is writable, as well as $TMPDIR on macOS.
# writable_roots can be used to specify additional writable folders.
[sandbox]
mode = "workspace-write"
writable_roots = [] # Optional, defaults to the empty list.
network_access = false # Optional, defaults to false.
# Disable sandboxing: use at your own risk!!!
[sandbox]
mode = "danger-full-access"
```
This should make sandboxing easier to reason about. While we have
dropped support for `-s`, the way it works now is:
- no flags => `read-only`
- `--full-auto` => `workspace-write`
- currently, there is no way to specify `danger-full-access` via a CLI
flag, but we will revisit that as part of
https://github.com/openai/codex/issues/1254
Outstanding issue:
- As noted in the `TODO` on `SandboxPolicy::is_unrestricted()`, we are
still conflating sandbox preferences with approval preferences in that
case, which needs to be cleaned up.
2025-06-24 16:59:47 -07:00
|
|
|
|
/// Determines execution restrictions for model shell commands.
|
|
|
|
|
|
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
|
|
|
|
|
|
#[serde(tag = "mode", rename_all = "kebab-case")]
|
|
|
|
|
|
pub enum SandboxPolicy {
|
|
|
|
|
|
/// No restrictions whatsoever. Use with caution.
|
|
|
|
|
|
#[serde(rename = "danger-full-access")]
|
|
|
|
|
|
DangerFullAccess,
|
|
|
|
|
|
|
|
|
|
|
|
/// Read-only access to the entire file-system.
|
|
|
|
|
|
#[serde(rename = "read-only")]
|
|
|
|
|
|
ReadOnly,
|
|
|
|
|
|
|
|
|
|
|
|
/// Same as `ReadOnly` but additionally grants write access to the current
|
|
|
|
|
|
/// working directory ("workspace").
|
|
|
|
|
|
#[serde(rename = "workspace-write")]
|
|
|
|
|
|
WorkspaceWrite {
|
|
|
|
|
|
/// Additional folders (beyond cwd and possibly TMPDIR) that should be
|
|
|
|
|
|
/// writable from within the sandbox.
|
|
|
|
|
|
#[serde(default, skip_serializing_if = "Vec::is_empty")]
|
|
|
|
|
|
writable_roots: Vec<PathBuf>,
|
|
|
|
|
|
|
|
|
|
|
|
/// When set to `true`, outbound network access is allowed. `false` by
|
|
|
|
|
|
/// default.
|
|
|
|
|
|
#[serde(default)]
|
|
|
|
|
|
network_access: bool,
|
2025-08-01 14:15:55 -07:00
|
|
|
|
|
|
|
|
|
|
/// When set to `true`, will include defaults like the current working
|
|
|
|
|
|
/// directory and TMPDIR (on macOS). When `false`, only `writable_roots`
|
|
|
|
|
|
/// are used. (Mainly used for testing.)
|
|
|
|
|
|
#[serde(default = "default_true")]
|
|
|
|
|
|
include_default_writable_roots: bool,
|
feat: redesign sandbox config (#1373)
This is a major redesign of how sandbox configuration works and aims to
fix https://github.com/openai/codex/issues/1248. Specifically, it
replaces `sandbox_permissions` in `config.toml` (and the
`-s`/`--sandbox-permission` CLI flags) with a "table" with effectively
three variants:
```toml
# Safest option: full disk is read-only, but writes and network access are disallowed.
[sandbox]
mode = "read-only"
# The cwd of the Codex task is writable, as well as $TMPDIR on macOS.
# writable_roots can be used to specify additional writable folders.
[sandbox]
mode = "workspace-write"
writable_roots = [] # Optional, defaults to the empty list.
network_access = false # Optional, defaults to false.
# Disable sandboxing: use at your own risk!!!
[sandbox]
mode = "danger-full-access"
```
This should make sandboxing easier to reason about. While we have
dropped support for `-s`, the way it works now is:
- no flags => `read-only`
- `--full-auto` => `workspace-write`
- currently, there is no way to specify `danger-full-access` via a CLI
flag, but we will revisit that as part of
https://github.com/openai/codex/issues/1254
Outstanding issue:
- As noted in the `TODO` on `SandboxPolicy::is_unrestricted()`, we are
still conflating sandbox preferences with approval preferences in that
case, which needs to be cleaned up.
2025-06-24 16:59:47 -07:00
|
|
|
|
},
|
fix: overhaul SandboxPolicy and config loading in Rust (#732)
Previous to this PR, `SandboxPolicy` was a bit difficult to work with:
https://github.com/openai/codex/blob/237f8a11e11fdcc793a09e787e48215676d9b95b/codex-rs/core/src/protocol.rs#L98-L108
Specifically:
* It was an `enum` and therefore options were mutually exclusive as
opposed to additive.
* It defined things in terms of what the agent _could not_ do as opposed
to what they _could_ do. This made things hard to support because we
would prefer to build up a sandbox config by starting with something
extremely restrictive and only granting permissions for things the user
as explicitly allowed.
This PR changes things substantially by redefining the policy in terms
of two concepts:
* A `SandboxPermission` enum that defines permissions that can be
granted to the agent/sandbox.
* A `SandboxPolicy` that internally stores a `Vec<SandboxPermission>`,
but externally exposes a simpler API that can be used to configure
Seatbelt/Landlock.
Previous to this PR, we supported a `--sandbox` flag that effectively
mapped to an enum value in `SandboxPolicy`. Though now that
`SandboxPolicy` is a wrapper around `Vec<SandboxPermission>`, the single
`--sandbox` flag no longer makes sense. While I could have turned it
into a flag that the user can specify multiple times, I think the
current values to use with such a flag are long and potentially messy,
so for the moment, I have dropped support for `--sandbox` altogether and
we can bring it back once we have figured out the naming thing.
Since `--sandbox` is gone, users now have to specify `--full-auto` to
get a sandbox that allows writes in `cwd`. Admittedly, there is no clean
way to specify the equivalent of `--full-auto` in your `config.toml`
right now, so we will have to revisit that, as well.
Because `Config` presents a `SandboxPolicy` field and `SandboxPolicy`
changed considerably, I had to overhaul how config loading works, as
well. There are now two distinct concepts, `ConfigToml` and `Config`:
* `ConfigToml` is the deserialization of `~/.codex/config.toml`. As one
might expect, every field is `Optional` and it is `#[derive(Deserialize,
Default)]`. Consistent use of `Optional` makes it clear what the user
has specified explicitly.
* `Config` is the "normalized config" and is produced by merging
`ConfigToml` with `ConfigOverrides`. Where `ConfigToml` contains a raw
`Option<Vec<SandboxPermission>>`, `Config` presents only the final
`SandboxPolicy`.
The changes to `core/src/exec.rs` and `core/src/linux.rs` merit extra
special attention to ensure we are faithfully mapping the
`SandboxPolicy` to the Seatbelt and Landlock configs, respectively.
Also, take note that `core/src/seatbelt_readonly_policy.sbpl` has been
renamed to `codex-rs/core/src/seatbelt_base_policy.sbpl` and that
`(allow file-read*)` has been removed from the `.sbpl` file as now this
is added to the policy in `core/src/exec.rs` when
`sandbox_policy.has_full_disk_read_access()` is `true`.
2025-04-29 15:01:16 -07:00
|
|
|
|
}
|
|
|
|
|
|
|
2025-08-01 16:11:24 -07:00
|
|
|
|
/// A writable root path accompanied by a list of subpaths that should remain
|
|
|
|
|
|
/// read‑only even when the root is writable. This is primarily used to ensure
|
|
|
|
|
|
/// top‑level VCS metadata directories (e.g. `.git`) under a writable root are
|
|
|
|
|
|
/// not modified by the agent.
|
|
|
|
|
|
#[derive(Debug, Clone, PartialEq, Eq)]
|
|
|
|
|
|
pub struct WritableRoot {
|
|
|
|
|
|
pub root: PathBuf,
|
|
|
|
|
|
pub read_only_subpaths: Vec<PathBuf>,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2025-08-01 14:15:55 -07:00
|
|
|
|
fn default_true() -> bool {
|
|
|
|
|
|
true
|
|
|
|
|
|
}
|
|
|
|
|
|
|
feat: redesign sandbox config (#1373)
This is a major redesign of how sandbox configuration works and aims to
fix https://github.com/openai/codex/issues/1248. Specifically, it
replaces `sandbox_permissions` in `config.toml` (and the
`-s`/`--sandbox-permission` CLI flags) with a "table" with effectively
three variants:
```toml
# Safest option: full disk is read-only, but writes and network access are disallowed.
[sandbox]
mode = "read-only"
# The cwd of the Codex task is writable, as well as $TMPDIR on macOS.
# writable_roots can be used to specify additional writable folders.
[sandbox]
mode = "workspace-write"
writable_roots = [] # Optional, defaults to the empty list.
network_access = false # Optional, defaults to false.
# Disable sandboxing: use at your own risk!!!
[sandbox]
mode = "danger-full-access"
```
This should make sandboxing easier to reason about. While we have
dropped support for `-s`, the way it works now is:
- no flags => `read-only`
- `--full-auto` => `workspace-write`
- currently, there is no way to specify `danger-full-access` via a CLI
flag, but we will revisit that as part of
https://github.com/openai/codex/issues/1254
Outstanding issue:
- As noted in the `TODO` on `SandboxPolicy::is_unrestricted()`, we are
still conflating sandbox preferences with approval preferences in that
case, which needs to be cleaned up.
2025-06-24 16:59:47 -07:00
|
|
|
|
impl FromStr for SandboxPolicy {
|
|
|
|
|
|
type Err = serde_json::Error;
|
|
|
|
|
|
|
|
|
|
|
|
fn from_str(s: &str) -> Result<Self, Self::Err> {
|
|
|
|
|
|
serde_json::from_str(s)
|
fix: overhaul SandboxPolicy and config loading in Rust (#732)
Previous to this PR, `SandboxPolicy` was a bit difficult to work with:
https://github.com/openai/codex/blob/237f8a11e11fdcc793a09e787e48215676d9b95b/codex-rs/core/src/protocol.rs#L98-L108
Specifically:
* It was an `enum` and therefore options were mutually exclusive as
opposed to additive.
* It defined things in terms of what the agent _could not_ do as opposed
to what they _could_ do. This made things hard to support because we
would prefer to build up a sandbox config by starting with something
extremely restrictive and only granting permissions for things the user
as explicitly allowed.
This PR changes things substantially by redefining the policy in terms
of two concepts:
* A `SandboxPermission` enum that defines permissions that can be
granted to the agent/sandbox.
* A `SandboxPolicy` that internally stores a `Vec<SandboxPermission>`,
but externally exposes a simpler API that can be used to configure
Seatbelt/Landlock.
Previous to this PR, we supported a `--sandbox` flag that effectively
mapped to an enum value in `SandboxPolicy`. Though now that
`SandboxPolicy` is a wrapper around `Vec<SandboxPermission>`, the single
`--sandbox` flag no longer makes sense. While I could have turned it
into a flag that the user can specify multiple times, I think the
current values to use with such a flag are long and potentially messy,
so for the moment, I have dropped support for `--sandbox` altogether and
we can bring it back once we have figured out the naming thing.
Since `--sandbox` is gone, users now have to specify `--full-auto` to
get a sandbox that allows writes in `cwd`. Admittedly, there is no clean
way to specify the equivalent of `--full-auto` in your `config.toml`
right now, so we will have to revisit that, as well.
Because `Config` presents a `SandboxPolicy` field and `SandboxPolicy`
changed considerably, I had to overhaul how config loading works, as
well. There are now two distinct concepts, `ConfigToml` and `Config`:
* `ConfigToml` is the deserialization of `~/.codex/config.toml`. As one
might expect, every field is `Optional` and it is `#[derive(Deserialize,
Default)]`. Consistent use of `Optional` makes it clear what the user
has specified explicitly.
* `Config` is the "normalized config" and is produced by merging
`ConfigToml` with `ConfigOverrides`. Where `ConfigToml` contains a raw
`Option<Vec<SandboxPermission>>`, `Config` presents only the final
`SandboxPolicy`.
The changes to `core/src/exec.rs` and `core/src/linux.rs` merit extra
special attention to ensure we are faithfully mapping the
`SandboxPolicy` to the Seatbelt and Landlock configs, respectively.
Also, take note that `core/src/seatbelt_readonly_policy.sbpl` has been
renamed to `codex-rs/core/src/seatbelt_base_policy.sbpl` and that
`(allow file-read*)` has been removed from the `.sbpl` file as now this
is added to the policy in `core/src/exec.rs` when
`sandbox_policy.has_full_disk_read_access()` is `true`.
2025-04-29 15:01:16 -07:00
|
|
|
|
}
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
}
|
|
|
|
|
|
|
2025-04-24 15:33:45 -07:00
|
|
|
|
impl SandboxPolicy {
|
feat: redesign sandbox config (#1373)
This is a major redesign of how sandbox configuration works and aims to
fix https://github.com/openai/codex/issues/1248. Specifically, it
replaces `sandbox_permissions` in `config.toml` (and the
`-s`/`--sandbox-permission` CLI flags) with a "table" with effectively
three variants:
```toml
# Safest option: full disk is read-only, but writes and network access are disallowed.
[sandbox]
mode = "read-only"
# The cwd of the Codex task is writable, as well as $TMPDIR on macOS.
# writable_roots can be used to specify additional writable folders.
[sandbox]
mode = "workspace-write"
writable_roots = [] # Optional, defaults to the empty list.
network_access = false # Optional, defaults to false.
# Disable sandboxing: use at your own risk!!!
[sandbox]
mode = "danger-full-access"
```
This should make sandboxing easier to reason about. While we have
dropped support for `-s`, the way it works now is:
- no flags => `read-only`
- `--full-auto` => `workspace-write`
- currently, there is no way to specify `danger-full-access` via a CLI
flag, but we will revisit that as part of
https://github.com/openai/codex/issues/1254
Outstanding issue:
- As noted in the `TODO` on `SandboxPolicy::is_unrestricted()`, we are
still conflating sandbox preferences with approval preferences in that
case, which needs to be cleaned up.
2025-06-24 16:59:47 -07:00
|
|
|
|
/// Returns a policy with read-only disk access and no network.
|
fix: overhaul SandboxPolicy and config loading in Rust (#732)
Previous to this PR, `SandboxPolicy` was a bit difficult to work with:
https://github.com/openai/codex/blob/237f8a11e11fdcc793a09e787e48215676d9b95b/codex-rs/core/src/protocol.rs#L98-L108
Specifically:
* It was an `enum` and therefore options were mutually exclusive as
opposed to additive.
* It defined things in terms of what the agent _could not_ do as opposed
to what they _could_ do. This made things hard to support because we
would prefer to build up a sandbox config by starting with something
extremely restrictive and only granting permissions for things the user
as explicitly allowed.
This PR changes things substantially by redefining the policy in terms
of two concepts:
* A `SandboxPermission` enum that defines permissions that can be
granted to the agent/sandbox.
* A `SandboxPolicy` that internally stores a `Vec<SandboxPermission>`,
but externally exposes a simpler API that can be used to configure
Seatbelt/Landlock.
Previous to this PR, we supported a `--sandbox` flag that effectively
mapped to an enum value in `SandboxPolicy`. Though now that
`SandboxPolicy` is a wrapper around `Vec<SandboxPermission>`, the single
`--sandbox` flag no longer makes sense. While I could have turned it
into a flag that the user can specify multiple times, I think the
current values to use with such a flag are long and potentially messy,
so for the moment, I have dropped support for `--sandbox` altogether and
we can bring it back once we have figured out the naming thing.
Since `--sandbox` is gone, users now have to specify `--full-auto` to
get a sandbox that allows writes in `cwd`. Admittedly, there is no clean
way to specify the equivalent of `--full-auto` in your `config.toml`
right now, so we will have to revisit that, as well.
Because `Config` presents a `SandboxPolicy` field and `SandboxPolicy`
changed considerably, I had to overhaul how config loading works, as
well. There are now two distinct concepts, `ConfigToml` and `Config`:
* `ConfigToml` is the deserialization of `~/.codex/config.toml`. As one
might expect, every field is `Optional` and it is `#[derive(Deserialize,
Default)]`. Consistent use of `Optional` makes it clear what the user
has specified explicitly.
* `Config` is the "normalized config" and is produced by merging
`ConfigToml` with `ConfigOverrides`. Where `ConfigToml` contains a raw
`Option<Vec<SandboxPermission>>`, `Config` presents only the final
`SandboxPolicy`.
The changes to `core/src/exec.rs` and `core/src/linux.rs` merit extra
special attention to ensure we are faithfully mapping the
`SandboxPolicy` to the Seatbelt and Landlock configs, respectively.
Also, take note that `core/src/seatbelt_readonly_policy.sbpl` has been
renamed to `codex-rs/core/src/seatbelt_base_policy.sbpl` and that
`(allow file-read*)` has been removed from the `.sbpl` file as now this
is added to the policy in `core/src/exec.rs` when
`sandbox_policy.has_full_disk_read_access()` is `true`.
2025-04-29 15:01:16 -07:00
|
|
|
|
pub fn new_read_only_policy() -> Self {
|
feat: redesign sandbox config (#1373)
This is a major redesign of how sandbox configuration works and aims to
fix https://github.com/openai/codex/issues/1248. Specifically, it
replaces `sandbox_permissions` in `config.toml` (and the
`-s`/`--sandbox-permission` CLI flags) with a "table" with effectively
three variants:
```toml
# Safest option: full disk is read-only, but writes and network access are disallowed.
[sandbox]
mode = "read-only"
# The cwd of the Codex task is writable, as well as $TMPDIR on macOS.
# writable_roots can be used to specify additional writable folders.
[sandbox]
mode = "workspace-write"
writable_roots = [] # Optional, defaults to the empty list.
network_access = false # Optional, defaults to false.
# Disable sandboxing: use at your own risk!!!
[sandbox]
mode = "danger-full-access"
```
This should make sandboxing easier to reason about. While we have
dropped support for `-s`, the way it works now is:
- no flags => `read-only`
- `--full-auto` => `workspace-write`
- currently, there is no way to specify `danger-full-access` via a CLI
flag, but we will revisit that as part of
https://github.com/openai/codex/issues/1254
Outstanding issue:
- As noted in the `TODO` on `SandboxPolicy::is_unrestricted()`, we are
still conflating sandbox preferences with approval preferences in that
case, which needs to be cleaned up.
2025-06-24 16:59:47 -07:00
|
|
|
|
SandboxPolicy::ReadOnly
|
2025-04-24 15:33:45 -07:00
|
|
|
|
}
|
|
|
|
|
|
|
feat: redesign sandbox config (#1373)
This is a major redesign of how sandbox configuration works and aims to
fix https://github.com/openai/codex/issues/1248. Specifically, it
replaces `sandbox_permissions` in `config.toml` (and the
`-s`/`--sandbox-permission` CLI flags) with a "table" with effectively
three variants:
```toml
# Safest option: full disk is read-only, but writes and network access are disallowed.
[sandbox]
mode = "read-only"
# The cwd of the Codex task is writable, as well as $TMPDIR on macOS.
# writable_roots can be used to specify additional writable folders.
[sandbox]
mode = "workspace-write"
writable_roots = [] # Optional, defaults to the empty list.
network_access = false # Optional, defaults to false.
# Disable sandboxing: use at your own risk!!!
[sandbox]
mode = "danger-full-access"
```
This should make sandboxing easier to reason about. While we have
dropped support for `-s`, the way it works now is:
- no flags => `read-only`
- `--full-auto` => `workspace-write`
- currently, there is no way to specify `danger-full-access` via a CLI
flag, but we will revisit that as part of
https://github.com/openai/codex/issues/1254
Outstanding issue:
- As noted in the `TODO` on `SandboxPolicy::is_unrestricted()`, we are
still conflating sandbox preferences with approval preferences in that
case, which needs to be cleaned up.
2025-06-24 16:59:47 -07:00
|
|
|
|
/// Returns a policy that can read the entire disk, but can only write to
|
|
|
|
|
|
/// the current working directory and the per-user tmp dir on macOS. It does
|
|
|
|
|
|
/// not allow network access.
|
|
|
|
|
|
pub fn new_workspace_write_policy() -> Self {
|
|
|
|
|
|
SandboxPolicy::WorkspaceWrite {
|
2025-06-24 17:48:51 -07:00
|
|
|
|
writable_roots: vec![],
|
feat: redesign sandbox config (#1373)
This is a major redesign of how sandbox configuration works and aims to
fix https://github.com/openai/codex/issues/1248. Specifically, it
replaces `sandbox_permissions` in `config.toml` (and the
`-s`/`--sandbox-permission` CLI flags) with a "table" with effectively
three variants:
```toml
# Safest option: full disk is read-only, but writes and network access are disallowed.
[sandbox]
mode = "read-only"
# The cwd of the Codex task is writable, as well as $TMPDIR on macOS.
# writable_roots can be used to specify additional writable folders.
[sandbox]
mode = "workspace-write"
writable_roots = [] # Optional, defaults to the empty list.
network_access = false # Optional, defaults to false.
# Disable sandboxing: use at your own risk!!!
[sandbox]
mode = "danger-full-access"
```
This should make sandboxing easier to reason about. While we have
dropped support for `-s`, the way it works now is:
- no flags => `read-only`
- `--full-auto` => `workspace-write`
- currently, there is no way to specify `danger-full-access` via a CLI
flag, but we will revisit that as part of
https://github.com/openai/codex/issues/1254
Outstanding issue:
- As noted in the `TODO` on `SandboxPolicy::is_unrestricted()`, we are
still conflating sandbox preferences with approval preferences in that
case, which needs to be cleaned up.
2025-06-24 16:59:47 -07:00
|
|
|
|
network_access: false,
|
2025-08-01 14:15:55 -07:00
|
|
|
|
include_default_writable_roots: true,
|
fix: overhaul SandboxPolicy and config loading in Rust (#732)
Previous to this PR, `SandboxPolicy` was a bit difficult to work with:
https://github.com/openai/codex/blob/237f8a11e11fdcc793a09e787e48215676d9b95b/codex-rs/core/src/protocol.rs#L98-L108
Specifically:
* It was an `enum` and therefore options were mutually exclusive as
opposed to additive.
* It defined things in terms of what the agent _could not_ do as opposed
to what they _could_ do. This made things hard to support because we
would prefer to build up a sandbox config by starting with something
extremely restrictive and only granting permissions for things the user
as explicitly allowed.
This PR changes things substantially by redefining the policy in terms
of two concepts:
* A `SandboxPermission` enum that defines permissions that can be
granted to the agent/sandbox.
* A `SandboxPolicy` that internally stores a `Vec<SandboxPermission>`,
but externally exposes a simpler API that can be used to configure
Seatbelt/Landlock.
Previous to this PR, we supported a `--sandbox` flag that effectively
mapped to an enum value in `SandboxPolicy`. Though now that
`SandboxPolicy` is a wrapper around `Vec<SandboxPermission>`, the single
`--sandbox` flag no longer makes sense. While I could have turned it
into a flag that the user can specify multiple times, I think the
current values to use with such a flag are long and potentially messy,
so for the moment, I have dropped support for `--sandbox` altogether and
we can bring it back once we have figured out the naming thing.
Since `--sandbox` is gone, users now have to specify `--full-auto` to
get a sandbox that allows writes in `cwd`. Admittedly, there is no clean
way to specify the equivalent of `--full-auto` in your `config.toml`
right now, so we will have to revisit that, as well.
Because `Config` presents a `SandboxPolicy` field and `SandboxPolicy`
changed considerably, I had to overhaul how config loading works, as
well. There are now two distinct concepts, `ConfigToml` and `Config`:
* `ConfigToml` is the deserialization of `~/.codex/config.toml`. As one
might expect, every field is `Optional` and it is `#[derive(Deserialize,
Default)]`. Consistent use of `Optional` makes it clear what the user
has specified explicitly.
* `Config` is the "normalized config" and is produced by merging
`ConfigToml` with `ConfigOverrides`. Where `ConfigToml` contains a raw
`Option<Vec<SandboxPermission>>`, `Config` presents only the final
`SandboxPolicy`.
The changes to `core/src/exec.rs` and `core/src/linux.rs` merit extra
special attention to ensure we are faithfully mapping the
`SandboxPolicy` to the Seatbelt and Landlock configs, respectively.
Also, take note that `core/src/seatbelt_readonly_policy.sbpl` has been
renamed to `codex-rs/core/src/seatbelt_base_policy.sbpl` and that
`(allow file-read*)` has been removed from the `.sbpl` file as now this
is added to the policy in `core/src/exec.rs` when
`sandbox_policy.has_full_disk_read_access()` is `true`.
2025-04-29 15:01:16 -07:00
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
feat: redesign sandbox config (#1373)
This is a major redesign of how sandbox configuration works and aims to
fix https://github.com/openai/codex/issues/1248. Specifically, it
replaces `sandbox_permissions` in `config.toml` (and the
`-s`/`--sandbox-permission` CLI flags) with a "table" with effectively
three variants:
```toml
# Safest option: full disk is read-only, but writes and network access are disallowed.
[sandbox]
mode = "read-only"
# The cwd of the Codex task is writable, as well as $TMPDIR on macOS.
# writable_roots can be used to specify additional writable folders.
[sandbox]
mode = "workspace-write"
writable_roots = [] # Optional, defaults to the empty list.
network_access = false # Optional, defaults to false.
# Disable sandboxing: use at your own risk!!!
[sandbox]
mode = "danger-full-access"
```
This should make sandboxing easier to reason about. While we have
dropped support for `-s`, the way it works now is:
- no flags => `read-only`
- `--full-auto` => `workspace-write`
- currently, there is no way to specify `danger-full-access` via a CLI
flag, but we will revisit that as part of
https://github.com/openai/codex/issues/1254
Outstanding issue:
- As noted in the `TODO` on `SandboxPolicy::is_unrestricted()`, we are
still conflating sandbox preferences with approval preferences in that
case, which needs to be cleaned up.
2025-06-24 16:59:47 -07:00
|
|
|
|
/// Always returns `true` for now, as we do not yet support restricting read
|
|
|
|
|
|
/// access.
|
fix: overhaul SandboxPolicy and config loading in Rust (#732)
Previous to this PR, `SandboxPolicy` was a bit difficult to work with:
https://github.com/openai/codex/blob/237f8a11e11fdcc793a09e787e48215676d9b95b/codex-rs/core/src/protocol.rs#L98-L108
Specifically:
* It was an `enum` and therefore options were mutually exclusive as
opposed to additive.
* It defined things in terms of what the agent _could not_ do as opposed
to what they _could_ do. This made things hard to support because we
would prefer to build up a sandbox config by starting with something
extremely restrictive and only granting permissions for things the user
as explicitly allowed.
This PR changes things substantially by redefining the policy in terms
of two concepts:
* A `SandboxPermission` enum that defines permissions that can be
granted to the agent/sandbox.
* A `SandboxPolicy` that internally stores a `Vec<SandboxPermission>`,
but externally exposes a simpler API that can be used to configure
Seatbelt/Landlock.
Previous to this PR, we supported a `--sandbox` flag that effectively
mapped to an enum value in `SandboxPolicy`. Though now that
`SandboxPolicy` is a wrapper around `Vec<SandboxPermission>`, the single
`--sandbox` flag no longer makes sense. While I could have turned it
into a flag that the user can specify multiple times, I think the
current values to use with such a flag are long and potentially messy,
so for the moment, I have dropped support for `--sandbox` altogether and
we can bring it back once we have figured out the naming thing.
Since `--sandbox` is gone, users now have to specify `--full-auto` to
get a sandbox that allows writes in `cwd`. Admittedly, there is no clean
way to specify the equivalent of `--full-auto` in your `config.toml`
right now, so we will have to revisit that, as well.
Because `Config` presents a `SandboxPolicy` field and `SandboxPolicy`
changed considerably, I had to overhaul how config loading works, as
well. There are now two distinct concepts, `ConfigToml` and `Config`:
* `ConfigToml` is the deserialization of `~/.codex/config.toml`. As one
might expect, every field is `Optional` and it is `#[derive(Deserialize,
Default)]`. Consistent use of `Optional` makes it clear what the user
has specified explicitly.
* `Config` is the "normalized config" and is produced by merging
`ConfigToml` with `ConfigOverrides`. Where `ConfigToml` contains a raw
`Option<Vec<SandboxPermission>>`, `Config` presents only the final
`SandboxPolicy`.
The changes to `core/src/exec.rs` and `core/src/linux.rs` merit extra
special attention to ensure we are faithfully mapping the
`SandboxPolicy` to the Seatbelt and Landlock configs, respectively.
Also, take note that `core/src/seatbelt_readonly_policy.sbpl` has been
renamed to `codex-rs/core/src/seatbelt_base_policy.sbpl` and that
`(allow file-read*)` has been removed from the `.sbpl` file as now this
is added to the policy in `core/src/exec.rs` when
`sandbox_policy.has_full_disk_read_access()` is `true`.
2025-04-29 15:01:16 -07:00
|
|
|
|
pub fn has_full_disk_read_access(&self) -> bool {
|
feat: redesign sandbox config (#1373)
This is a major redesign of how sandbox configuration works and aims to
fix https://github.com/openai/codex/issues/1248. Specifically, it
replaces `sandbox_permissions` in `config.toml` (and the
`-s`/`--sandbox-permission` CLI flags) with a "table" with effectively
three variants:
```toml
# Safest option: full disk is read-only, but writes and network access are disallowed.
[sandbox]
mode = "read-only"
# The cwd of the Codex task is writable, as well as $TMPDIR on macOS.
# writable_roots can be used to specify additional writable folders.
[sandbox]
mode = "workspace-write"
writable_roots = [] # Optional, defaults to the empty list.
network_access = false # Optional, defaults to false.
# Disable sandboxing: use at your own risk!!!
[sandbox]
mode = "danger-full-access"
```
This should make sandboxing easier to reason about. While we have
dropped support for `-s`, the way it works now is:
- no flags => `read-only`
- `--full-auto` => `workspace-write`
- currently, there is no way to specify `danger-full-access` via a CLI
flag, but we will revisit that as part of
https://github.com/openai/codex/issues/1254
Outstanding issue:
- As noted in the `TODO` on `SandboxPolicy::is_unrestricted()`, we are
still conflating sandbox preferences with approval preferences in that
case, which needs to be cleaned up.
2025-06-24 16:59:47 -07:00
|
|
|
|
true
|
fix: overhaul SandboxPolicy and config loading in Rust (#732)
Previous to this PR, `SandboxPolicy` was a bit difficult to work with:
https://github.com/openai/codex/blob/237f8a11e11fdcc793a09e787e48215676d9b95b/codex-rs/core/src/protocol.rs#L98-L108
Specifically:
* It was an `enum` and therefore options were mutually exclusive as
opposed to additive.
* It defined things in terms of what the agent _could not_ do as opposed
to what they _could_ do. This made things hard to support because we
would prefer to build up a sandbox config by starting with something
extremely restrictive and only granting permissions for things the user
as explicitly allowed.
This PR changes things substantially by redefining the policy in terms
of two concepts:
* A `SandboxPermission` enum that defines permissions that can be
granted to the agent/sandbox.
* A `SandboxPolicy` that internally stores a `Vec<SandboxPermission>`,
but externally exposes a simpler API that can be used to configure
Seatbelt/Landlock.
Previous to this PR, we supported a `--sandbox` flag that effectively
mapped to an enum value in `SandboxPolicy`. Though now that
`SandboxPolicy` is a wrapper around `Vec<SandboxPermission>`, the single
`--sandbox` flag no longer makes sense. While I could have turned it
into a flag that the user can specify multiple times, I think the
current values to use with such a flag are long and potentially messy,
so for the moment, I have dropped support for `--sandbox` altogether and
we can bring it back once we have figured out the naming thing.
Since `--sandbox` is gone, users now have to specify `--full-auto` to
get a sandbox that allows writes in `cwd`. Admittedly, there is no clean
way to specify the equivalent of `--full-auto` in your `config.toml`
right now, so we will have to revisit that, as well.
Because `Config` presents a `SandboxPolicy` field and `SandboxPolicy`
changed considerably, I had to overhaul how config loading works, as
well. There are now two distinct concepts, `ConfigToml` and `Config`:
* `ConfigToml` is the deserialization of `~/.codex/config.toml`. As one
might expect, every field is `Optional` and it is `#[derive(Deserialize,
Default)]`. Consistent use of `Optional` makes it clear what the user
has specified explicitly.
* `Config` is the "normalized config" and is produced by merging
`ConfigToml` with `ConfigOverrides`. Where `ConfigToml` contains a raw
`Option<Vec<SandboxPermission>>`, `Config` presents only the final
`SandboxPolicy`.
The changes to `core/src/exec.rs` and `core/src/linux.rs` merit extra
special attention to ensure we are faithfully mapping the
`SandboxPolicy` to the Seatbelt and Landlock configs, respectively.
Also, take note that `core/src/seatbelt_readonly_policy.sbpl` has been
renamed to `codex-rs/core/src/seatbelt_base_policy.sbpl` and that
`(allow file-read*)` has been removed from the `.sbpl` file as now this
is added to the policy in `core/src/exec.rs` when
`sandbox_policy.has_full_disk_read_access()` is `true`.
2025-04-29 15:01:16 -07:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
pub fn has_full_disk_write_access(&self) -> bool {
|
feat: redesign sandbox config (#1373)
This is a major redesign of how sandbox configuration works and aims to
fix https://github.com/openai/codex/issues/1248. Specifically, it
replaces `sandbox_permissions` in `config.toml` (and the
`-s`/`--sandbox-permission` CLI flags) with a "table" with effectively
three variants:
```toml
# Safest option: full disk is read-only, but writes and network access are disallowed.
[sandbox]
mode = "read-only"
# The cwd of the Codex task is writable, as well as $TMPDIR on macOS.
# writable_roots can be used to specify additional writable folders.
[sandbox]
mode = "workspace-write"
writable_roots = [] # Optional, defaults to the empty list.
network_access = false # Optional, defaults to false.
# Disable sandboxing: use at your own risk!!!
[sandbox]
mode = "danger-full-access"
```
This should make sandboxing easier to reason about. While we have
dropped support for `-s`, the way it works now is:
- no flags => `read-only`
- `--full-auto` => `workspace-write`
- currently, there is no way to specify `danger-full-access` via a CLI
flag, but we will revisit that as part of
https://github.com/openai/codex/issues/1254
Outstanding issue:
- As noted in the `TODO` on `SandboxPolicy::is_unrestricted()`, we are
still conflating sandbox preferences with approval preferences in that
case, which needs to be cleaned up.
2025-06-24 16:59:47 -07:00
|
|
|
|
match self {
|
|
|
|
|
|
SandboxPolicy::DangerFullAccess => true,
|
|
|
|
|
|
SandboxPolicy::ReadOnly => false,
|
|
|
|
|
|
SandboxPolicy::WorkspaceWrite { .. } => false,
|
|
|
|
|
|
}
|
fix: overhaul SandboxPolicy and config loading in Rust (#732)
Previous to this PR, `SandboxPolicy` was a bit difficult to work with:
https://github.com/openai/codex/blob/237f8a11e11fdcc793a09e787e48215676d9b95b/codex-rs/core/src/protocol.rs#L98-L108
Specifically:
* It was an `enum` and therefore options were mutually exclusive as
opposed to additive.
* It defined things in terms of what the agent _could not_ do as opposed
to what they _could_ do. This made things hard to support because we
would prefer to build up a sandbox config by starting with something
extremely restrictive and only granting permissions for things the user
as explicitly allowed.
This PR changes things substantially by redefining the policy in terms
of two concepts:
* A `SandboxPermission` enum that defines permissions that can be
granted to the agent/sandbox.
* A `SandboxPolicy` that internally stores a `Vec<SandboxPermission>`,
but externally exposes a simpler API that can be used to configure
Seatbelt/Landlock.
Previous to this PR, we supported a `--sandbox` flag that effectively
mapped to an enum value in `SandboxPolicy`. Though now that
`SandboxPolicy` is a wrapper around `Vec<SandboxPermission>`, the single
`--sandbox` flag no longer makes sense. While I could have turned it
into a flag that the user can specify multiple times, I think the
current values to use with such a flag are long and potentially messy,
so for the moment, I have dropped support for `--sandbox` altogether and
we can bring it back once we have figured out the naming thing.
Since `--sandbox` is gone, users now have to specify `--full-auto` to
get a sandbox that allows writes in `cwd`. Admittedly, there is no clean
way to specify the equivalent of `--full-auto` in your `config.toml`
right now, so we will have to revisit that, as well.
Because `Config` presents a `SandboxPolicy` field and `SandboxPolicy`
changed considerably, I had to overhaul how config loading works, as
well. There are now two distinct concepts, `ConfigToml` and `Config`:
* `ConfigToml` is the deserialization of `~/.codex/config.toml`. As one
might expect, every field is `Optional` and it is `#[derive(Deserialize,
Default)]`. Consistent use of `Optional` makes it clear what the user
has specified explicitly.
* `Config` is the "normalized config" and is produced by merging
`ConfigToml` with `ConfigOverrides`. Where `ConfigToml` contains a raw
`Option<Vec<SandboxPermission>>`, `Config` presents only the final
`SandboxPolicy`.
The changes to `core/src/exec.rs` and `core/src/linux.rs` merit extra
special attention to ensure we are faithfully mapping the
`SandboxPolicy` to the Seatbelt and Landlock configs, respectively.
Also, take note that `core/src/seatbelt_readonly_policy.sbpl` has been
renamed to `codex-rs/core/src/seatbelt_base_policy.sbpl` and that
`(allow file-read*)` has been removed from the `.sbpl` file as now this
is added to the policy in `core/src/exec.rs` when
`sandbox_policy.has_full_disk_read_access()` is `true`.
2025-04-29 15:01:16 -07:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
pub fn has_full_network_access(&self) -> bool {
|
feat: redesign sandbox config (#1373)
This is a major redesign of how sandbox configuration works and aims to
fix https://github.com/openai/codex/issues/1248. Specifically, it
replaces `sandbox_permissions` in `config.toml` (and the
`-s`/`--sandbox-permission` CLI flags) with a "table" with effectively
three variants:
```toml
# Safest option: full disk is read-only, but writes and network access are disallowed.
[sandbox]
mode = "read-only"
# The cwd of the Codex task is writable, as well as $TMPDIR on macOS.
# writable_roots can be used to specify additional writable folders.
[sandbox]
mode = "workspace-write"
writable_roots = [] # Optional, defaults to the empty list.
network_access = false # Optional, defaults to false.
# Disable sandboxing: use at your own risk!!!
[sandbox]
mode = "danger-full-access"
```
This should make sandboxing easier to reason about. While we have
dropped support for `-s`, the way it works now is:
- no flags => `read-only`
- `--full-auto` => `workspace-write`
- currently, there is no way to specify `danger-full-access` via a CLI
flag, but we will revisit that as part of
https://github.com/openai/codex/issues/1254
Outstanding issue:
- As noted in the `TODO` on `SandboxPolicy::is_unrestricted()`, we are
still conflating sandbox preferences with approval preferences in that
case, which needs to be cleaned up.
2025-06-24 16:59:47 -07:00
|
|
|
|
match self {
|
|
|
|
|
|
SandboxPolicy::DangerFullAccess => true,
|
|
|
|
|
|
SandboxPolicy::ReadOnly => false,
|
|
|
|
|
|
SandboxPolicy::WorkspaceWrite { network_access, .. } => *network_access,
|
|
|
|
|
|
}
|
fix: overhaul SandboxPolicy and config loading in Rust (#732)
Previous to this PR, `SandboxPolicy` was a bit difficult to work with:
https://github.com/openai/codex/blob/237f8a11e11fdcc793a09e787e48215676d9b95b/codex-rs/core/src/protocol.rs#L98-L108
Specifically:
* It was an `enum` and therefore options were mutually exclusive as
opposed to additive.
* It defined things in terms of what the agent _could not_ do as opposed
to what they _could_ do. This made things hard to support because we
would prefer to build up a sandbox config by starting with something
extremely restrictive and only granting permissions for things the user
as explicitly allowed.
This PR changes things substantially by redefining the policy in terms
of two concepts:
* A `SandboxPermission` enum that defines permissions that can be
granted to the agent/sandbox.
* A `SandboxPolicy` that internally stores a `Vec<SandboxPermission>`,
but externally exposes a simpler API that can be used to configure
Seatbelt/Landlock.
Previous to this PR, we supported a `--sandbox` flag that effectively
mapped to an enum value in `SandboxPolicy`. Though now that
`SandboxPolicy` is a wrapper around `Vec<SandboxPermission>`, the single
`--sandbox` flag no longer makes sense. While I could have turned it
into a flag that the user can specify multiple times, I think the
current values to use with such a flag are long and potentially messy,
so for the moment, I have dropped support for `--sandbox` altogether and
we can bring it back once we have figured out the naming thing.
Since `--sandbox` is gone, users now have to specify `--full-auto` to
get a sandbox that allows writes in `cwd`. Admittedly, there is no clean
way to specify the equivalent of `--full-auto` in your `config.toml`
right now, so we will have to revisit that, as well.
Because `Config` presents a `SandboxPolicy` field and `SandboxPolicy`
changed considerably, I had to overhaul how config loading works, as
well. There are now two distinct concepts, `ConfigToml` and `Config`:
* `ConfigToml` is the deserialization of `~/.codex/config.toml`. As one
might expect, every field is `Optional` and it is `#[derive(Deserialize,
Default)]`. Consistent use of `Optional` makes it clear what the user
has specified explicitly.
* `Config` is the "normalized config" and is produced by merging
`ConfigToml` with `ConfigOverrides`. Where `ConfigToml` contains a raw
`Option<Vec<SandboxPermission>>`, `Config` presents only the final
`SandboxPolicy`.
The changes to `core/src/exec.rs` and `core/src/linux.rs` merit extra
special attention to ensure we are faithfully mapping the
`SandboxPolicy` to the Seatbelt and Landlock configs, respectively.
Also, take note that `core/src/seatbelt_readonly_policy.sbpl` has been
renamed to `codex-rs/core/src/seatbelt_base_policy.sbpl` and that
`(allow file-read*)` has been removed from the `.sbpl` file as now this
is added to the policy in `core/src/exec.rs` when
`sandbox_policy.has_full_disk_read_access()` is `true`.
2025-04-29 15:01:16 -07:00
|
|
|
|
}
|
|
|
|
|
|
|
2025-08-01 16:11:24 -07:00
|
|
|
|
/// Returns the list of writable roots (tailored to the current working
|
|
|
|
|
|
/// directory) together with subpaths that should remain read‑only under
|
|
|
|
|
|
/// each writable root.
|
|
|
|
|
|
pub fn get_writable_roots_with_cwd(&self, cwd: &Path) -> Vec<WritableRoot> {
|
feat: redesign sandbox config (#1373)
This is a major redesign of how sandbox configuration works and aims to
fix https://github.com/openai/codex/issues/1248. Specifically, it
replaces `sandbox_permissions` in `config.toml` (and the
`-s`/`--sandbox-permission` CLI flags) with a "table" with effectively
three variants:
```toml
# Safest option: full disk is read-only, but writes and network access are disallowed.
[sandbox]
mode = "read-only"
# The cwd of the Codex task is writable, as well as $TMPDIR on macOS.
# writable_roots can be used to specify additional writable folders.
[sandbox]
mode = "workspace-write"
writable_roots = [] # Optional, defaults to the empty list.
network_access = false # Optional, defaults to false.
# Disable sandboxing: use at your own risk!!!
[sandbox]
mode = "danger-full-access"
```
This should make sandboxing easier to reason about. While we have
dropped support for `-s`, the way it works now is:
- no flags => `read-only`
- `--full-auto` => `workspace-write`
- currently, there is no way to specify `danger-full-access` via a CLI
flag, but we will revisit that as part of
https://github.com/openai/codex/issues/1254
Outstanding issue:
- As noted in the `TODO` on `SandboxPolicy::is_unrestricted()`, we are
still conflating sandbox preferences with approval preferences in that
case, which needs to be cleaned up.
2025-06-24 16:59:47 -07:00
|
|
|
|
match self {
|
|
|
|
|
|
SandboxPolicy::DangerFullAccess => Vec::new(),
|
|
|
|
|
|
SandboxPolicy::ReadOnly => Vec::new(),
|
2025-08-01 14:15:55 -07:00
|
|
|
|
SandboxPolicy::WorkspaceWrite {
|
|
|
|
|
|
writable_roots,
|
|
|
|
|
|
include_default_writable_roots,
|
|
|
|
|
|
..
|
|
|
|
|
|
} => {
|
2025-08-01 16:11:24 -07:00
|
|
|
|
// Start from explicitly configured writable roots.
|
|
|
|
|
|
let mut roots: Vec<PathBuf> = writable_roots.clone();
|
|
|
|
|
|
|
|
|
|
|
|
// Optionally include defaults (cwd and TMPDIR on macOS).
|
|
|
|
|
|
if *include_default_writable_roots {
|
|
|
|
|
|
roots.push(cwd.to_path_buf());
|
|
|
|
|
|
|
|
|
|
|
|
// Also include the per-user tmp dir on macOS.
|
|
|
|
|
|
// Note this is added dynamically rather than storing it in
|
|
|
|
|
|
// `writable_roots` because `writable_roots` contains only static
|
|
|
|
|
|
// values deserialized from the config file.
|
|
|
|
|
|
if cfg!(target_os = "macos") {
|
|
|
|
|
|
if let Some(tmpdir) = std::env::var_os("TMPDIR") {
|
|
|
|
|
|
roots.push(PathBuf::from(tmpdir));
|
|
|
|
|
|
}
|
2025-06-24 17:48:51 -07:00
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2025-08-01 16:11:24 -07:00
|
|
|
|
// For each root, compute subpaths that should remain read-only.
|
feat: redesign sandbox config (#1373)
This is a major redesign of how sandbox configuration works and aims to
fix https://github.com/openai/codex/issues/1248. Specifically, it
replaces `sandbox_permissions` in `config.toml` (and the
`-s`/`--sandbox-permission` CLI flags) with a "table" with effectively
three variants:
```toml
# Safest option: full disk is read-only, but writes and network access are disallowed.
[sandbox]
mode = "read-only"
# The cwd of the Codex task is writable, as well as $TMPDIR on macOS.
# writable_roots can be used to specify additional writable folders.
[sandbox]
mode = "workspace-write"
writable_roots = [] # Optional, defaults to the empty list.
network_access = false # Optional, defaults to false.
# Disable sandboxing: use at your own risk!!!
[sandbox]
mode = "danger-full-access"
```
This should make sandboxing easier to reason about. While we have
dropped support for `-s`, the way it works now is:
- no flags => `read-only`
- `--full-auto` => `workspace-write`
- currently, there is no way to specify `danger-full-access` via a CLI
flag, but we will revisit that as part of
https://github.com/openai/codex/issues/1254
Outstanding issue:
- As noted in the `TODO` on `SandboxPolicy::is_unrestricted()`, we are
still conflating sandbox preferences with approval preferences in that
case, which needs to be cleaned up.
2025-06-24 16:59:47 -07:00
|
|
|
|
roots
|
2025-08-01 16:11:24 -07:00
|
|
|
|
.into_iter()
|
|
|
|
|
|
.map(|writable_root| {
|
|
|
|
|
|
let mut subpaths = Vec::new();
|
|
|
|
|
|
let top_level_git = writable_root.join(".git");
|
|
|
|
|
|
if top_level_git.is_dir() {
|
|
|
|
|
|
subpaths.push(top_level_git);
|
|
|
|
|
|
}
|
|
|
|
|
|
WritableRoot {
|
|
|
|
|
|
root: writable_root,
|
|
|
|
|
|
read_only_subpaths: subpaths,
|
|
|
|
|
|
}
|
|
|
|
|
|
})
|
|
|
|
|
|
.collect()
|
fix: overhaul SandboxPolicy and config loading in Rust (#732)
Previous to this PR, `SandboxPolicy` was a bit difficult to work with:
https://github.com/openai/codex/blob/237f8a11e11fdcc793a09e787e48215676d9b95b/codex-rs/core/src/protocol.rs#L98-L108
Specifically:
* It was an `enum` and therefore options were mutually exclusive as
opposed to additive.
* It defined things in terms of what the agent _could not_ do as opposed
to what they _could_ do. This made things hard to support because we
would prefer to build up a sandbox config by starting with something
extremely restrictive and only granting permissions for things the user
as explicitly allowed.
This PR changes things substantially by redefining the policy in terms
of two concepts:
* A `SandboxPermission` enum that defines permissions that can be
granted to the agent/sandbox.
* A `SandboxPolicy` that internally stores a `Vec<SandboxPermission>`,
but externally exposes a simpler API that can be used to configure
Seatbelt/Landlock.
Previous to this PR, we supported a `--sandbox` flag that effectively
mapped to an enum value in `SandboxPolicy`. Though now that
`SandboxPolicy` is a wrapper around `Vec<SandboxPermission>`, the single
`--sandbox` flag no longer makes sense. While I could have turned it
into a flag that the user can specify multiple times, I think the
current values to use with such a flag are long and potentially messy,
so for the moment, I have dropped support for `--sandbox` altogether and
we can bring it back once we have figured out the naming thing.
Since `--sandbox` is gone, users now have to specify `--full-auto` to
get a sandbox that allows writes in `cwd`. Admittedly, there is no clean
way to specify the equivalent of `--full-auto` in your `config.toml`
right now, so we will have to revisit that, as well.
Because `Config` presents a `SandboxPolicy` field and `SandboxPolicy`
changed considerably, I had to overhaul how config loading works, as
well. There are now two distinct concepts, `ConfigToml` and `Config`:
* `ConfigToml` is the deserialization of `~/.codex/config.toml`. As one
might expect, every field is `Optional` and it is `#[derive(Deserialize,
Default)]`. Consistent use of `Optional` makes it clear what the user
has specified explicitly.
* `Config` is the "normalized config" and is produced by merging
`ConfigToml` with `ConfigOverrides`. Where `ConfigToml` contains a raw
`Option<Vec<SandboxPermission>>`, `Config` presents only the final
`SandboxPolicy`.
The changes to `core/src/exec.rs` and `core/src/linux.rs` merit extra
special attention to ensure we are faithfully mapping the
`SandboxPolicy` to the Seatbelt and Landlock configs, respectively.
Also, take note that `core/src/seatbelt_readonly_policy.sbpl` has been
renamed to `codex-rs/core/src/seatbelt_base_policy.sbpl` and that
`(allow file-read*)` has been removed from the `.sbpl` file as now this
is added to the policy in `core/src/exec.rs` when
`sandbox_policy.has_full_disk_read_access()` is `true`.
2025-04-29 15:01:16 -07:00
|
|
|
|
}
|
|
|
|
|
|
}
|
2025-04-24 15:33:45 -07:00
|
|
|
|
}
|
|
|
|
|
|
}
|
fix: overhaul SandboxPolicy and config loading in Rust (#732)
Previous to this PR, `SandboxPolicy` was a bit difficult to work with:
https://github.com/openai/codex/blob/237f8a11e11fdcc793a09e787e48215676d9b95b/codex-rs/core/src/protocol.rs#L98-L108
Specifically:
* It was an `enum` and therefore options were mutually exclusive as
opposed to additive.
* It defined things in terms of what the agent _could not_ do as opposed
to what they _could_ do. This made things hard to support because we
would prefer to build up a sandbox config by starting with something
extremely restrictive and only granting permissions for things the user
as explicitly allowed.
This PR changes things substantially by redefining the policy in terms
of two concepts:
* A `SandboxPermission` enum that defines permissions that can be
granted to the agent/sandbox.
* A `SandboxPolicy` that internally stores a `Vec<SandboxPermission>`,
but externally exposes a simpler API that can be used to configure
Seatbelt/Landlock.
Previous to this PR, we supported a `--sandbox` flag that effectively
mapped to an enum value in `SandboxPolicy`. Though now that
`SandboxPolicy` is a wrapper around `Vec<SandboxPermission>`, the single
`--sandbox` flag no longer makes sense. While I could have turned it
into a flag that the user can specify multiple times, I think the
current values to use with such a flag are long and potentially messy,
so for the moment, I have dropped support for `--sandbox` altogether and
we can bring it back once we have figured out the naming thing.
Since `--sandbox` is gone, users now have to specify `--full-auto` to
get a sandbox that allows writes in `cwd`. Admittedly, there is no clean
way to specify the equivalent of `--full-auto` in your `config.toml`
right now, so we will have to revisit that, as well.
Because `Config` presents a `SandboxPolicy` field and `SandboxPolicy`
changed considerably, I had to overhaul how config loading works, as
well. There are now two distinct concepts, `ConfigToml` and `Config`:
* `ConfigToml` is the deserialization of `~/.codex/config.toml`. As one
might expect, every field is `Optional` and it is `#[derive(Deserialize,
Default)]`. Consistent use of `Optional` makes it clear what the user
has specified explicitly.
* `Config` is the "normalized config" and is produced by merging
`ConfigToml` with `ConfigOverrides`. Where `ConfigToml` contains a raw
`Option<Vec<SandboxPermission>>`, `Config` presents only the final
`SandboxPolicy`.
The changes to `core/src/exec.rs` and `core/src/linux.rs` merit extra
special attention to ensure we are faithfully mapping the
`SandboxPolicy` to the Seatbelt and Landlock configs, respectively.
Also, take note that `core/src/seatbelt_readonly_policy.sbpl` has been
renamed to `codex-rs/core/src/seatbelt_base_policy.sbpl` and that
`(allow file-read*)` has been removed from the `.sbpl` file as now this
is added to the policy in `core/src/exec.rs` when
`sandbox_policy.has_full_disk_read_access()` is `true`.
2025-04-29 15:01:16 -07:00
|
|
|
|
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
/// User input
|
|
|
|
|
|
#[non_exhaustive]
|
feat: record messages from user in ~/.codex/history.jsonl (#939)
This is a large change to support a "history" feature like you would
expect in a shell like Bash.
History events are recorded in `$CODEX_HOME/history.jsonl`. Because it
is a JSONL file, it is straightforward to append new entries (as opposed
to the TypeScript file that uses `$CODEX_HOME/history.json`, so to be
valid JSON, each new entry entails rewriting the entire file). Because
it is possible for there to be multiple instances of Codex CLI writing
to `history.jsonl` at once, we use advisory file locking when working
with `history.jsonl` in `codex-rs/core/src/message_history.rs`.
Because we believe history is a sufficiently useful feature, we enable
it by default. Though to provide some safety, we set the file
permissions of `history.jsonl` to be `o600` so that other users on the
system cannot read the user's history. We do not yet support a default
list of `SENSITIVE_PATTERNS` as the TypeScript CLI does:
https://github.com/openai/codex/blob/3fdf9df1335ac9501e3fb0e61715359145711e8b/codex-cli/src/utils/storage/command-history.ts#L10-L17
We are going to take a more conservative approach to this list in the
Rust CLI. For example, while `/\b[A-Za-z0-9-_]{20,}\b/` might exclude
sensitive information like API tokens, it would also exclude valuable
information such as references to Git commits.
As noted in the updated documentation, users can opt-out of history by
adding the following to `config.toml`:
```toml
[history]
persistence = "none"
```
Because `history.jsonl` could, in theory, be quite large, we take a[n
arguably overly pedantic] approach in reading history entries into
memory. Specifically, we start by telling the client the current number
of entries in the history file (`history_entry_count`) as well as the
inode (`history_log_id`) of `history.jsonl` (see the new fields on
`SessionConfiguredEvent`).
The client is responsible for keeping new entries in memory to create a
"local history," but if the user hits up enough times to go "past" the
end of local history, then the client should use the new
`GetHistoryEntryRequest` in the protocol to fetch older entries.
Specifically, it should pass the `history_log_id` it was given
originally and work backwards from `history_entry_count`. (It should
really fetch history in batches rather than one-at-a-time, but that is
something we can improve upon in subsequent PRs.)
The motivation behind this crazy scheme is that it is designed to defend
against:
* The `history.jsonl` being truncated during the session such that the
index into the history is no longer consistent with what had been read
up to that point. We do not yet have logic to enforce a `max_bytes` for
`history.jsonl`, but once we do, we will aspire to implement it in a way
that should result in a new inode for the file on most systems.
* New items from concurrent Codex CLI sessions amending to the history.
Because, in absence of truncation, `history.jsonl` is an append-only
log, so long as the client reads backwards from `history_entry_count`,
it should always get a consistent view of history. (That said, it will
not be able to read _new_ commands from concurrent sessions, but perhaps
we will introduce a `/` command to reload latest history or something
down the road.)
Admittedly, my testing of this feature thus far has been fairly light. I
expect we will find bugs and introduce enhancements/fixes going forward.
2025-05-15 16:26:23 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq)]
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
#[serde(tag = "type", rename_all = "snake_case")]
|
|
|
|
|
|
pub enum InputItem {
|
|
|
|
|
|
Text {
|
|
|
|
|
|
text: String,
|
|
|
|
|
|
},
|
|
|
|
|
|
/// Pre‑encoded data: URI image.
|
|
|
|
|
|
Image {
|
|
|
|
|
|
image_url: String,
|
|
|
|
|
|
},
|
|
|
|
|
|
|
|
|
|
|
|
/// Local image path provided by the user. This will be converted to an
|
|
|
|
|
|
/// `Image` variant (base64 data URL) during request serialization.
|
|
|
|
|
|
LocalImage {
|
|
|
|
|
|
path: std::path::PathBuf,
|
|
|
|
|
|
},
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Event Queue Entry - events from agent
|
|
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct Event {
|
|
|
|
|
|
/// Submission `id` that this event is correlated with.
|
|
|
|
|
|
pub id: String,
|
|
|
|
|
|
/// Payload
|
|
|
|
|
|
pub msg: EventMsg,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Response event from the agent
|
2025-07-26 10:35:49 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize, Display)]
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
#[serde(tag = "type", rename_all = "snake_case")]
|
2025-07-28 10:26:27 -07:00
|
|
|
|
#[strum(serialize_all = "snake_case")]
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
pub enum EventMsg {
|
|
|
|
|
|
/// Error while executing a submission
|
2025-05-13 20:44:42 -07:00
|
|
|
|
Error(ErrorEvent),
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
|
|
|
|
|
/// Agent has started a task
|
|
|
|
|
|
TaskStarted,
|
|
|
|
|
|
|
|
|
|
|
|
/// Agent has completed all actions
|
2025-05-19 16:08:18 -07:00
|
|
|
|
TaskComplete(TaskCompleteEvent),
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
feat: show number of tokens remaining in UI (#1388)
When using the OpenAI Responses API, we now record the `usage` field for
a `"response.completed"` event, which includes metrics about the number
of tokens consumed. We also introduce `openai_model_info.rs`, which
includes current data about the most common OpenAI models available via
the API (specifically `context_window` and `max_output_tokens`). If
Codex does not recognize the model, you can set `model_context_window`
and `model_max_output_tokens` explicitly in `config.toml`.
When then introduce a new event type to `protocol.rs`, `TokenCount`,
which includes the `TokenUsage` for the most recent turn.
Finally, we update the TUI to record the running sum of tokens used so
the percentage of available context window remaining can be reported via
the placeholder text for the composer:

We could certainly get much fancier with this (such as reporting the
estimated cost of the conversation), but for now, we are just trying to
achieve feature parity with the TypeScript CLI.
Though arguably this improves upon the TypeScript CLI, as the TypeScript
CLI uses heuristics to estimate the number of tokens used rather than
using the `usage` information directly:
https://github.com/openai/codex/blob/296996d74e345b1b05d8c3451a06ace21c5ada96/codex-cli/src/utils/approximate-tokens-used.ts#L3-L16
Fixes https://github.com/openai/codex/issues/1242
2025-06-25 23:31:11 -07:00
|
|
|
|
/// Token count event, sent periodically to report the number of tokens
|
|
|
|
|
|
/// used in the current session.
|
|
|
|
|
|
TokenCount(TokenUsage),
|
|
|
|
|
|
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
/// Agent text output message
|
2025-05-13 20:44:42 -07:00
|
|
|
|
AgentMessage(AgentMessageEvent),
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
2025-07-16 15:11:18 -07:00
|
|
|
|
/// Agent text output delta message
|
|
|
|
|
|
AgentMessageDelta(AgentMessageDeltaEvent),
|
|
|
|
|
|
|
2025-05-10 21:43:27 -07:00
|
|
|
|
/// Reasoning event from agent.
|
2025-05-13 20:44:42 -07:00
|
|
|
|
AgentReasoning(AgentReasoningEvent),
|
2025-05-10 21:43:27 -07:00
|
|
|
|
|
2025-07-16 15:11:18 -07:00
|
|
|
|
/// Agent reasoning delta event from agent.
|
|
|
|
|
|
AgentReasoningDelta(AgentReasoningDeltaEvent),
|
|
|
|
|
|
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
/// Ack the client's configure message.
|
2025-05-13 19:22:16 -07:00
|
|
|
|
SessionConfigured(SessionConfiguredEvent),
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
2025-05-13 20:44:42 -07:00
|
|
|
|
McpToolCallBegin(McpToolCallBeginEvent),
|
feat: support mcp_servers in config.toml (#829)
This adds initial support for MCP servers in the style of Claude Desktop
and Cursor. Note this PR is the bare minimum to get things working end
to end: all configured MCP servers are launched every time Codex is run,
there is no recovery for MCP servers that crash, etc.
(Also, I took some shortcuts to change some fields of `Session` to be
`pub(crate)`, which also means there are circular deps between
`codex.rs` and `mcp_tool_call.rs`, but I will clean that up in a
subsequent PR.)
`codex-rs/README.md` is updated as part of this PR to explain how to use
this feature. There is a bit of plumbing to route the new settings from
`Config` to the business logic in `codex.rs`. The most significant
chunks for new code are in `mcp_connection_manager.rs` (which defines
the `McpConnectionManager` struct) and `mcp_tool_call.rs`, which is
responsible for tool calls.
This PR also introduces new `McpToolCallBegin` and `McpToolCallEnd`
event types to the protocol, but does not add any handlers for them.
(See https://github.com/openai/codex/pull/836 for initial usage.)
To test, I added the following to my `~/.codex/config.toml`:
```toml
# Local build of https://github.com/hideya/mcp-server-weather-js
[mcp_servers.weather]
command = "/Users/mbolin/code/mcp-server-weather-js/dist/index.js"
args = []
```
And then I ran the following:
```
codex-rs$ cargo run --bin codex exec 'what is the weather in san francisco'
[2025-05-06T22:40:05] Task started: 1
[2025-05-06T22:40:18] Agent message: Here’s the latest National Weather Service forecast for San Francisco (downtown, near 37.77° N, 122.42° W):
This Afternoon (Tue):
• Sunny, high near 69 °F
• West-southwest wind around 12 mph
Tonight:
• Partly cloudy, low around 52 °F
• SW wind 7–10 mph
...
```
Note that Codex itself is not able to make network calls, so it would
not normally be able to get live weather information like this. However,
the weather MCP is [currently] not run under the Codex sandbox, so it is
able to hit `api.weather.gov` and fetch current weather information.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/829).
* #836
* __->__ #829
2025-05-06 15:47:59 -07:00
|
|
|
|
|
2025-05-13 20:44:42 -07:00
|
|
|
|
McpToolCallEnd(McpToolCallEndEvent),
|
feat: support mcp_servers in config.toml (#829)
This adds initial support for MCP servers in the style of Claude Desktop
and Cursor. Note this PR is the bare minimum to get things working end
to end: all configured MCP servers are launched every time Codex is run,
there is no recovery for MCP servers that crash, etc.
(Also, I took some shortcuts to change some fields of `Session` to be
`pub(crate)`, which also means there are circular deps between
`codex.rs` and `mcp_tool_call.rs`, but I will clean that up in a
subsequent PR.)
`codex-rs/README.md` is updated as part of this PR to explain how to use
this feature. There is a bit of plumbing to route the new settings from
`Config` to the business logic in `codex.rs`. The most significant
chunks for new code are in `mcp_connection_manager.rs` (which defines
the `McpConnectionManager` struct) and `mcp_tool_call.rs`, which is
responsible for tool calls.
This PR also introduces new `McpToolCallBegin` and `McpToolCallEnd`
event types to the protocol, but does not add any handlers for them.
(See https://github.com/openai/codex/pull/836 for initial usage.)
To test, I added the following to my `~/.codex/config.toml`:
```toml
# Local build of https://github.com/hideya/mcp-server-weather-js
[mcp_servers.weather]
command = "/Users/mbolin/code/mcp-server-weather-js/dist/index.js"
args = []
```
And then I ran the following:
```
codex-rs$ cargo run --bin codex exec 'what is the weather in san francisco'
[2025-05-06T22:40:05] Task started: 1
[2025-05-06T22:40:18] Agent message: Here’s the latest National Weather Service forecast for San Francisco (downtown, near 37.77° N, 122.42° W):
This Afternoon (Tue):
• Sunny, high near 69 °F
• West-southwest wind around 12 mph
Tonight:
• Partly cloudy, low around 52 °F
• SW wind 7–10 mph
...
```
Note that Codex itself is not able to make network calls, so it would
not normally be able to get live weather information like this. However,
the weather MCP is [currently] not run under the Codex sandbox, so it is
able to hit `api.weather.gov` and fetch current weather information.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/829).
* #836
* __->__ #829
2025-05-06 15:47:59 -07:00
|
|
|
|
|
2025-05-13 20:44:42 -07:00
|
|
|
|
/// Notification that the server is about to execute a command.
|
|
|
|
|
|
ExecCommandBegin(ExecCommandBeginEvent),
|
feat: support mcp_servers in config.toml (#829)
This adds initial support for MCP servers in the style of Claude Desktop
and Cursor. Note this PR is the bare minimum to get things working end
to end: all configured MCP servers are launched every time Codex is run,
there is no recovery for MCP servers that crash, etc.
(Also, I took some shortcuts to change some fields of `Session` to be
`pub(crate)`, which also means there are circular deps between
`codex.rs` and `mcp_tool_call.rs`, but I will clean that up in a
subsequent PR.)
`codex-rs/README.md` is updated as part of this PR to explain how to use
this feature. There is a bit of plumbing to route the new settings from
`Config` to the business logic in `codex.rs`. The most significant
chunks for new code are in `mcp_connection_manager.rs` (which defines
the `McpConnectionManager` struct) and `mcp_tool_call.rs`, which is
responsible for tool calls.
This PR also introduces new `McpToolCallBegin` and `McpToolCallEnd`
event types to the protocol, but does not add any handlers for them.
(See https://github.com/openai/codex/pull/836 for initial usage.)
To test, I added the following to my `~/.codex/config.toml`:
```toml
# Local build of https://github.com/hideya/mcp-server-weather-js
[mcp_servers.weather]
command = "/Users/mbolin/code/mcp-server-weather-js/dist/index.js"
args = []
```
And then I ran the following:
```
codex-rs$ cargo run --bin codex exec 'what is the weather in san francisco'
[2025-05-06T22:40:05] Task started: 1
[2025-05-06T22:40:18] Agent message: Here’s the latest National Weather Service forecast for San Francisco (downtown, near 37.77° N, 122.42° W):
This Afternoon (Tue):
• Sunny, high near 69 °F
• West-southwest wind around 12 mph
Tonight:
• Partly cloudy, low around 52 °F
• SW wind 7–10 mph
...
```
Note that Codex itself is not able to make network calls, so it would
not normally be able to get live weather information like this. However,
the weather MCP is [currently] not run under the Codex sandbox, so it is
able to hit `api.weather.gov` and fetch current weather information.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/829).
* #836
* __->__ #829
2025-05-06 15:47:59 -07:00
|
|
|
|
|
2025-08-01 14:00:19 -07:00
|
|
|
|
/// Incremental chunk of output from a running command.
|
|
|
|
|
|
ExecCommandOutputDelta(ExecCommandOutputDeltaEvent),
|
2025-08-01 13:04:34 -07:00
|
|
|
|
|
2025-05-13 20:44:42 -07:00
|
|
|
|
ExecCommandEnd(ExecCommandEndEvent),
|
feat: support mcp_servers in config.toml (#829)
This adds initial support for MCP servers in the style of Claude Desktop
and Cursor. Note this PR is the bare minimum to get things working end
to end: all configured MCP servers are launched every time Codex is run,
there is no recovery for MCP servers that crash, etc.
(Also, I took some shortcuts to change some fields of `Session` to be
`pub(crate)`, which also means there are circular deps between
`codex.rs` and `mcp_tool_call.rs`, but I will clean that up in a
subsequent PR.)
`codex-rs/README.md` is updated as part of this PR to explain how to use
this feature. There is a bit of plumbing to route the new settings from
`Config` to the business logic in `codex.rs`. The most significant
chunks for new code are in `mcp_connection_manager.rs` (which defines
the `McpConnectionManager` struct) and `mcp_tool_call.rs`, which is
responsible for tool calls.
This PR also introduces new `McpToolCallBegin` and `McpToolCallEnd`
event types to the protocol, but does not add any handlers for them.
(See https://github.com/openai/codex/pull/836 for initial usage.)
To test, I added the following to my `~/.codex/config.toml`:
```toml
# Local build of https://github.com/hideya/mcp-server-weather-js
[mcp_servers.weather]
command = "/Users/mbolin/code/mcp-server-weather-js/dist/index.js"
args = []
```
And then I ran the following:
```
codex-rs$ cargo run --bin codex exec 'what is the weather in san francisco'
[2025-05-06T22:40:05] Task started: 1
[2025-05-06T22:40:18] Agent message: Here’s the latest National Weather Service forecast for San Francisco (downtown, near 37.77° N, 122.42° W):
This Afternoon (Tue):
• Sunny, high near 69 °F
• West-southwest wind around 12 mph
Tonight:
• Partly cloudy, low around 52 °F
• SW wind 7–10 mph
...
```
Note that Codex itself is not able to make network calls, so it would
not normally be able to get live weather information like this. However,
the weather MCP is [currently] not run under the Codex sandbox, so it is
able to hit `api.weather.gov` and fetch current weather information.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/829).
* #836
* __->__ #829
2025-05-06 15:47:59 -07:00
|
|
|
|
|
2025-05-13 20:44:42 -07:00
|
|
|
|
ExecApprovalRequest(ExecApprovalRequestEvent),
|
feat: support mcp_servers in config.toml (#829)
This adds initial support for MCP servers in the style of Claude Desktop
and Cursor. Note this PR is the bare minimum to get things working end
to end: all configured MCP servers are launched every time Codex is run,
there is no recovery for MCP servers that crash, etc.
(Also, I took some shortcuts to change some fields of `Session` to be
`pub(crate)`, which also means there are circular deps between
`codex.rs` and `mcp_tool_call.rs`, but I will clean that up in a
subsequent PR.)
`codex-rs/README.md` is updated as part of this PR to explain how to use
this feature. There is a bit of plumbing to route the new settings from
`Config` to the business logic in `codex.rs`. The most significant
chunks for new code are in `mcp_connection_manager.rs` (which defines
the `McpConnectionManager` struct) and `mcp_tool_call.rs`, which is
responsible for tool calls.
This PR also introduces new `McpToolCallBegin` and `McpToolCallEnd`
event types to the protocol, but does not add any handlers for them.
(See https://github.com/openai/codex/pull/836 for initial usage.)
To test, I added the following to my `~/.codex/config.toml`:
```toml
# Local build of https://github.com/hideya/mcp-server-weather-js
[mcp_servers.weather]
command = "/Users/mbolin/code/mcp-server-weather-js/dist/index.js"
args = []
```
And then I ran the following:
```
codex-rs$ cargo run --bin codex exec 'what is the weather in san francisco'
[2025-05-06T22:40:05] Task started: 1
[2025-05-06T22:40:18] Agent message: Here’s the latest National Weather Service forecast for San Francisco (downtown, near 37.77° N, 122.42° W):
This Afternoon (Tue):
• Sunny, high near 69 °F
• West-southwest wind around 12 mph
Tonight:
• Partly cloudy, low around 52 °F
• SW wind 7–10 mph
...
```
Note that Codex itself is not able to make network calls, so it would
not normally be able to get live weather information like this. However,
the weather MCP is [currently] not run under the Codex sandbox, so it is
able to hit `api.weather.gov` and fetch current weather information.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/829).
* #836
* __->__ #829
2025-05-06 15:47:59 -07:00
|
|
|
|
|
2025-05-13 20:44:42 -07:00
|
|
|
|
ApplyPatchApprovalRequest(ApplyPatchApprovalRequestEvent),
|
feat: support mcp_servers in config.toml (#829)
This adds initial support for MCP servers in the style of Claude Desktop
and Cursor. Note this PR is the bare minimum to get things working end
to end: all configured MCP servers are launched every time Codex is run,
there is no recovery for MCP servers that crash, etc.
(Also, I took some shortcuts to change some fields of `Session` to be
`pub(crate)`, which also means there are circular deps between
`codex.rs` and `mcp_tool_call.rs`, but I will clean that up in a
subsequent PR.)
`codex-rs/README.md` is updated as part of this PR to explain how to use
this feature. There is a bit of plumbing to route the new settings from
`Config` to the business logic in `codex.rs`. The most significant
chunks for new code are in `mcp_connection_manager.rs` (which defines
the `McpConnectionManager` struct) and `mcp_tool_call.rs`, which is
responsible for tool calls.
This PR also introduces new `McpToolCallBegin` and `McpToolCallEnd`
event types to the protocol, but does not add any handlers for them.
(See https://github.com/openai/codex/pull/836 for initial usage.)
To test, I added the following to my `~/.codex/config.toml`:
```toml
# Local build of https://github.com/hideya/mcp-server-weather-js
[mcp_servers.weather]
command = "/Users/mbolin/code/mcp-server-weather-js/dist/index.js"
args = []
```
And then I ran the following:
```
codex-rs$ cargo run --bin codex exec 'what is the weather in san francisco'
[2025-05-06T22:40:05] Task started: 1
[2025-05-06T22:40:18] Agent message: Here’s the latest National Weather Service forecast for San Francisco (downtown, near 37.77° N, 122.42° W):
This Afternoon (Tue):
• Sunny, high near 69 °F
• West-southwest wind around 12 mph
Tonight:
• Partly cloudy, low around 52 °F
• SW wind 7–10 mph
...
```
Note that Codex itself is not able to make network calls, so it would
not normally be able to get live weather information like this. However,
the weather MCP is [currently] not run under the Codex sandbox, so it is
able to hit `api.weather.gov` and fetch current weather information.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/829).
* #836
* __->__ #829
2025-05-06 15:47:59 -07:00
|
|
|
|
|
2025-05-13 20:44:42 -07:00
|
|
|
|
BackgroundEvent(BackgroundEventEvent),
|
feat: support mcp_servers in config.toml (#829)
This adds initial support for MCP servers in the style of Claude Desktop
and Cursor. Note this PR is the bare minimum to get things working end
to end: all configured MCP servers are launched every time Codex is run,
there is no recovery for MCP servers that crash, etc.
(Also, I took some shortcuts to change some fields of `Session` to be
`pub(crate)`, which also means there are circular deps between
`codex.rs` and `mcp_tool_call.rs`, but I will clean that up in a
subsequent PR.)
`codex-rs/README.md` is updated as part of this PR to explain how to use
this feature. There is a bit of plumbing to route the new settings from
`Config` to the business logic in `codex.rs`. The most significant
chunks for new code are in `mcp_connection_manager.rs` (which defines
the `McpConnectionManager` struct) and `mcp_tool_call.rs`, which is
responsible for tool calls.
This PR also introduces new `McpToolCallBegin` and `McpToolCallEnd`
event types to the protocol, but does not add any handlers for them.
(See https://github.com/openai/codex/pull/836 for initial usage.)
To test, I added the following to my `~/.codex/config.toml`:
```toml
# Local build of https://github.com/hideya/mcp-server-weather-js
[mcp_servers.weather]
command = "/Users/mbolin/code/mcp-server-weather-js/dist/index.js"
args = []
```
And then I ran the following:
```
codex-rs$ cargo run --bin codex exec 'what is the weather in san francisco'
[2025-05-06T22:40:05] Task started: 1
[2025-05-06T22:40:18] Agent message: Here’s the latest National Weather Service forecast for San Francisco (downtown, near 37.77° N, 122.42° W):
This Afternoon (Tue):
• Sunny, high near 69 °F
• West-southwest wind around 12 mph
Tonight:
• Partly cloudy, low around 52 °F
• SW wind 7–10 mph
...
```
Note that Codex itself is not able to make network calls, so it would
not normally be able to get live weather information like this. However,
the weather MCP is [currently] not run under the Codex sandbox, so it is
able to hit `api.weather.gov` and fetch current weather information.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/829).
* #836
* __->__ #829
2025-05-06 15:47:59 -07:00
|
|
|
|
|
2025-05-13 20:44:42 -07:00
|
|
|
|
/// Notification that the agent is about to apply a code patch. Mirrors
|
|
|
|
|
|
/// `ExecCommandBegin` so front‑ends can show progress indicators.
|
|
|
|
|
|
PatchApplyBegin(PatchApplyBeginEvent),
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
2025-05-13 20:44:42 -07:00
|
|
|
|
/// Notification that a patch application has finished.
|
|
|
|
|
|
PatchApplyEnd(PatchApplyEndEvent),
|
feat: record messages from user in ~/.codex/history.jsonl (#939)
This is a large change to support a "history" feature like you would
expect in a shell like Bash.
History events are recorded in `$CODEX_HOME/history.jsonl`. Because it
is a JSONL file, it is straightforward to append new entries (as opposed
to the TypeScript file that uses `$CODEX_HOME/history.json`, so to be
valid JSON, each new entry entails rewriting the entire file). Because
it is possible for there to be multiple instances of Codex CLI writing
to `history.jsonl` at once, we use advisory file locking when working
with `history.jsonl` in `codex-rs/core/src/message_history.rs`.
Because we believe history is a sufficiently useful feature, we enable
it by default. Though to provide some safety, we set the file
permissions of `history.jsonl` to be `o600` so that other users on the
system cannot read the user's history. We do not yet support a default
list of `SENSITIVE_PATTERNS` as the TypeScript CLI does:
https://github.com/openai/codex/blob/3fdf9df1335ac9501e3fb0e61715359145711e8b/codex-cli/src/utils/storage/command-history.ts#L10-L17
We are going to take a more conservative approach to this list in the
Rust CLI. For example, while `/\b[A-Za-z0-9-_]{20,}\b/` might exclude
sensitive information like API tokens, it would also exclude valuable
information such as references to Git commits.
As noted in the updated documentation, users can opt-out of history by
adding the following to `config.toml`:
```toml
[history]
persistence = "none"
```
Because `history.jsonl` could, in theory, be quite large, we take a[n
arguably overly pedantic] approach in reading history entries into
memory. Specifically, we start by telling the client the current number
of entries in the history file (`history_entry_count`) as well as the
inode (`history_log_id`) of `history.jsonl` (see the new fields on
`SessionConfiguredEvent`).
The client is responsible for keeping new entries in memory to create a
"local history," but if the user hits up enough times to go "past" the
end of local history, then the client should use the new
`GetHistoryEntryRequest` in the protocol to fetch older entries.
Specifically, it should pass the `history_log_id` it was given
originally and work backwards from `history_entry_count`. (It should
really fetch history in batches rather than one-at-a-time, but that is
something we can improve upon in subsequent PRs.)
The motivation behind this crazy scheme is that it is designed to defend
against:
* The `history.jsonl` being truncated during the session such that the
index into the history is no longer consistent with what had been read
up to that point. We do not yet have logic to enforce a `max_bytes` for
`history.jsonl`, but once we do, we will aspire to implement it in a way
that should result in a new inode for the file on most systems.
* New items from concurrent Codex CLI sessions amending to the history.
Because, in absence of truncation, `history.jsonl` is an append-only
log, so long as the client reads backwards from `history_entry_count`,
it should always get a consistent view of history. (That said, it will
not be able to read _new_ commands from concurrent sessions, but perhaps
we will introduce a `/` command to reload latest history or something
down the road.)
Admittedly, my testing of this feature thus far has been fairly light. I
expect we will find bugs and introduce enhancements/fixes going forward.
2025-05-15 16:26:23 -07:00
|
|
|
|
|
|
|
|
|
|
/// Response to GetHistoryEntryRequest.
|
|
|
|
|
|
GetHistoryEntryResponse(GetHistoryEntryResponseEvent),
|
2025-07-23 15:03:26 -07:00
|
|
|
|
|
2025-07-29 11:22:02 -07:00
|
|
|
|
PlanUpdate(UpdatePlanArgs),
|
|
|
|
|
|
|
2025-07-23 15:03:26 -07:00
|
|
|
|
/// Notification that the agent is shutting down.
|
|
|
|
|
|
ShutdownComplete,
|
2025-05-13 20:44:42 -07:00
|
|
|
|
}
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
2025-05-13 20:44:42 -07:00
|
|
|
|
// Individual event payload types matching each `EventMsg` variant.
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
2025-05-13 20:44:42 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct ErrorEvent {
|
|
|
|
|
|
pub message: String,
|
|
|
|
|
|
}
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
2025-05-19 16:08:18 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct TaskCompleteEvent {
|
|
|
|
|
|
pub last_agent_message: Option<String>,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
feat: show number of tokens remaining in UI (#1388)
When using the OpenAI Responses API, we now record the `usage` field for
a `"response.completed"` event, which includes metrics about the number
of tokens consumed. We also introduce `openai_model_info.rs`, which
includes current data about the most common OpenAI models available via
the API (specifically `context_window` and `max_output_tokens`). If
Codex does not recognize the model, you can set `model_context_window`
and `model_max_output_tokens` explicitly in `config.toml`.
When then introduce a new event type to `protocol.rs`, `TokenCount`,
which includes the `TokenUsage` for the most recent turn.
Finally, we update the TUI to record the running sum of tokens used so
the percentage of available context window remaining can be reported via
the placeholder text for the composer:

We could certainly get much fancier with this (such as reporting the
estimated cost of the conversation), but for now, we are just trying to
achieve feature parity with the TypeScript CLI.
Though arguably this improves upon the TypeScript CLI, as the TypeScript
CLI uses heuristics to estimate the number of tokens used rather than
using the `usage` information directly:
https://github.com/openai/codex/blob/296996d74e345b1b05d8c3451a06ace21c5ada96/codex-cli/src/utils/approximate-tokens-used.ts#L3-L16
Fixes https://github.com/openai/codex/issues/1242
2025-06-25 23:31:11 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize, Default)]
|
|
|
|
|
|
pub struct TokenUsage {
|
|
|
|
|
|
pub input_tokens: u64,
|
|
|
|
|
|
pub cached_input_tokens: Option<u64>,
|
|
|
|
|
|
pub output_tokens: u64,
|
|
|
|
|
|
pub reasoning_output_tokens: Option<u64>,
|
|
|
|
|
|
pub total_tokens: u64,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2025-07-25 01:56:40 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct FinalOutput {
|
|
|
|
|
|
pub token_usage: TokenUsage,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
impl From<TokenUsage> for FinalOutput {
|
|
|
|
|
|
fn from(token_usage: TokenUsage) -> Self {
|
|
|
|
|
|
Self { token_usage }
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
impl fmt::Display for FinalOutput {
|
|
|
|
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
|
|
|
|
let u = &self.token_usage;
|
|
|
|
|
|
write!(
|
|
|
|
|
|
f,
|
|
|
|
|
|
"Token usage: total={} input={}{} output={}{}",
|
|
|
|
|
|
u.total_tokens,
|
|
|
|
|
|
u.input_tokens,
|
|
|
|
|
|
u.cached_input_tokens
|
|
|
|
|
|
.map(|c| format!(" (cached {c})"))
|
|
|
|
|
|
.unwrap_or_default(),
|
|
|
|
|
|
u.output_tokens,
|
|
|
|
|
|
u.reasoning_output_tokens
|
|
|
|
|
|
.map(|r| format!(" (reasoning {r})"))
|
|
|
|
|
|
.unwrap_or_default()
|
|
|
|
|
|
)
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2025-05-13 20:44:42 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct AgentMessageEvent {
|
|
|
|
|
|
pub message: String,
|
|
|
|
|
|
}
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
2025-07-16 15:11:18 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct AgentMessageDeltaEvent {
|
|
|
|
|
|
pub delta: String,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2025-05-13 20:44:42 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct AgentReasoningEvent {
|
|
|
|
|
|
pub text: String,
|
|
|
|
|
|
}
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
2025-07-16 15:11:18 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct AgentReasoningDeltaEvent {
|
|
|
|
|
|
pub delta: String,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2025-05-13 20:44:42 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
2025-07-30 10:05:40 -07:00
|
|
|
|
pub struct McpInvocation {
|
2025-05-13 20:44:42 -07:00
|
|
|
|
/// Name of the MCP server as defined in the config.
|
|
|
|
|
|
pub server: String,
|
|
|
|
|
|
/// Name of the tool as given by the MCP server.
|
|
|
|
|
|
pub tool: String,
|
|
|
|
|
|
/// Arguments to the tool call.
|
|
|
|
|
|
pub arguments: Option<serde_json::Value>,
|
|
|
|
|
|
}
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
2025-07-30 10:05:40 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct McpToolCallBeginEvent {
|
|
|
|
|
|
/// Identifier so this can be paired with the McpToolCallEnd event.
|
|
|
|
|
|
pub call_id: String,
|
|
|
|
|
|
pub invocation: McpInvocation,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2025-05-13 20:44:42 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct McpToolCallEndEvent {
|
|
|
|
|
|
/// Identifier for the corresponding McpToolCallBegin that finished.
|
|
|
|
|
|
pub call_id: String,
|
2025-07-30 10:05:40 -07:00
|
|
|
|
pub invocation: McpInvocation,
|
|
|
|
|
|
pub duration: Duration,
|
2025-05-13 20:44:42 -07:00
|
|
|
|
/// Result of the tool call. Note this could be an error.
|
fix: introduce ResponseInputItem::McpToolCallOutput variant (#1151)
The output of an MCP server tool call can be one of several types, but
to date, we treated all outputs as text by showing the serialized JSON
as the "tool output" in Codex:
https://github.com/openai/codex/blob/25a9949c49194d5a64de54a11bcc5b4724ac9bd5/codex-rs/mcp-types/src/lib.rs#L96-L101
This PR adds support for the `ImageContent` variant so we can now
display an image output from an MCP tool call.
In making this change, we introduce a new
`ResponseInputItem::McpToolCallOutput` variant so that we can work with
the `mcp_types::CallToolResult` directly when the function call is made
to an MCP server.
Though arguably the more significant change is the introduction of
`HistoryCell::CompletedMcpToolCallWithImageOutput`, which is a cell that
uses `ratatui_image` to render an image into the terminal. To support
this, we introduce `ImageRenderCache`, cache a
`ratatui_image::picker::Picker`, and `ensure_image_cache()` to cache the
appropriate scaled image data and dimensions based on the current
terminal size.
To test, I created a minimal `package.json`:
```json
{
"name": "kitty-mcp",
"version": "1.0.0",
"type": "module",
"description": "MCP that returns image of kitty",
"main": "index.js",
"dependencies": {
"@modelcontextprotocol/sdk": "^1.12.0"
}
}
```
with the following `index.js` to define the MCP server:
```js
#!/usr/bin/env node
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
import { readFile } from "node:fs/promises";
import { join } from "node:path";
const IMAGE_URI = "image://Ada.png";
const server = new McpServer({
name: "Demo",
version: "1.0.0",
});
server.tool(
"get-cat-image",
"If you need a cat image, this tool will provide one.",
async () => ({
content: [
{ type: "image", data: await getAdaPngBase64(), mimeType: "image/png" },
],
})
);
server.resource("Ada the Cat", IMAGE_URI, async (uri) => {
const base64Image = await getAdaPngBase64();
return {
contents: [
{
uri: uri.href,
mimeType: "image/png",
blob: base64Image,
},
],
};
});
async function getAdaPngBase64() {
const __dirname = new URL(".", import.meta.url).pathname;
// From https://github.com/benjajaja/ratatui-image/blob/9705ce2c59ec669abbce2924cbfd1f5ae22c9860/assets/Ada.png
const filePath = join(__dirname, "Ada.png");
const imageData = await readFile(filePath);
const base64Image = imageData.toString("base64");
return base64Image;
}
const transport = new StdioServerTransport();
await server.connect(transport);
```
With the local changes from this PR, I added the following to my
`config.toml`:
```toml
[mcp_servers.kitty]
command = "node"
args = ["/Users/mbolin/code/kitty-mcp/index.js"]
```
Running the TUI from source:
```
cargo run --bin codex -- --model o3 'I need a picture of a cat'
```
I get:
<img width="732" alt="image"
src="https://github.com/user-attachments/assets/bf80b721-9ca0-4d81-aec7-77d6899e2869"
/>
Now, that said, I have only tested in iTerm and there is definitely some
funny business with getting an accurate character-to-pixel ratio
(sometimes the `CompletedMcpToolCallWithImageOutput` thinks it needs 10
rows to render instead of 4), so there is still work to be done here.
2025-05-28 19:03:17 -07:00
|
|
|
|
pub result: Result<CallToolResult, String>,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
impl McpToolCallEndEvent {
|
|
|
|
|
|
pub fn is_success(&self) -> bool {
|
|
|
|
|
|
match &self.result {
|
|
|
|
|
|
Ok(result) => !result.is_error.unwrap_or(false),
|
|
|
|
|
|
Err(_) => false,
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|
2025-05-13 20:44:42 -07:00
|
|
|
|
}
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
2025-05-13 20:44:42 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct ExecCommandBeginEvent {
|
|
|
|
|
|
/// Identifier so this can be paired with the ExecCommandEnd event.
|
|
|
|
|
|
pub call_id: String,
|
|
|
|
|
|
/// The command to be executed.
|
|
|
|
|
|
pub command: Vec<String>,
|
|
|
|
|
|
/// The command's working directory if not the default cwd for the agent.
|
|
|
|
|
|
pub cwd: PathBuf,
|
|
|
|
|
|
}
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
|
2025-05-13 20:44:42 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct ExecCommandEndEvent {
|
|
|
|
|
|
/// Identifier for the ExecCommandBegin that finished.
|
|
|
|
|
|
pub call_id: String,
|
|
|
|
|
|
/// Captured stdout
|
|
|
|
|
|
pub stdout: String,
|
|
|
|
|
|
/// Captured stderr
|
|
|
|
|
|
pub stderr: String,
|
|
|
|
|
|
/// The command's exit code.
|
|
|
|
|
|
pub exit_code: i32,
|
2025-08-03 11:33:44 -07:00
|
|
|
|
/// The duration of the command execution.
|
|
|
|
|
|
pub duration: Duration,
|
2025-05-13 20:44:42 -07:00
|
|
|
|
}
|
|
|
|
|
|
|
2025-08-01 13:04:34 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
2025-08-01 14:00:19 -07:00
|
|
|
|
#[serde(rename_all = "snake_case")]
|
|
|
|
|
|
pub enum ExecOutputStream {
|
|
|
|
|
|
Stdout,
|
|
|
|
|
|
Stderr,
|
2025-08-01 13:04:34 -07:00
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
2025-08-01 14:00:19 -07:00
|
|
|
|
pub struct ExecCommandOutputDeltaEvent {
|
2025-08-01 13:04:34 -07:00
|
|
|
|
/// Identifier for the ExecCommandBegin that produced this chunk.
|
|
|
|
|
|
pub call_id: String,
|
2025-08-01 14:00:19 -07:00
|
|
|
|
/// Which stream produced this chunk.
|
|
|
|
|
|
pub stream: ExecOutputStream,
|
|
|
|
|
|
/// Raw bytes from the stream (may not be valid UTF-8).
|
2025-08-01 13:04:34 -07:00
|
|
|
|
#[serde(with = "serde_bytes")]
|
|
|
|
|
|
pub chunk: ByteBuf,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2025-05-13 20:44:42 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct ExecApprovalRequestEvent {
|
2025-07-23 11:43:53 -07:00
|
|
|
|
/// Identifier for the associated exec call, if available.
|
|
|
|
|
|
pub call_id: String,
|
2025-05-13 20:44:42 -07:00
|
|
|
|
/// The command to be executed.
|
|
|
|
|
|
pub command: Vec<String>,
|
|
|
|
|
|
/// The command's working directory.
|
|
|
|
|
|
pub cwd: PathBuf,
|
|
|
|
|
|
/// Optional human-readable reason for the approval (e.g. retry without sandbox).
|
|
|
|
|
|
#[serde(skip_serializing_if = "Option::is_none")]
|
|
|
|
|
|
pub reason: Option<String>,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct ApplyPatchApprovalRequestEvent {
|
2025-07-23 12:55:35 -07:00
|
|
|
|
/// Responses API call id for the associated patch apply call, if available.
|
|
|
|
|
|
pub call_id: String,
|
2025-05-13 20:44:42 -07:00
|
|
|
|
pub changes: HashMap<PathBuf, FileChange>,
|
|
|
|
|
|
/// Optional explanatory reason (e.g. request for extra write access).
|
|
|
|
|
|
#[serde(skip_serializing_if = "Option::is_none")]
|
|
|
|
|
|
pub reason: Option<String>,
|
|
|
|
|
|
/// When set, the agent is asking the user to allow writes under this root for the remainder of the session.
|
|
|
|
|
|
#[serde(skip_serializing_if = "Option::is_none")]
|
|
|
|
|
|
pub grant_root: Option<PathBuf>,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct BackgroundEventEvent {
|
|
|
|
|
|
pub message: String,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct PatchApplyBeginEvent {
|
|
|
|
|
|
/// Identifier so this can be paired with the PatchApplyEnd event.
|
|
|
|
|
|
pub call_id: String,
|
|
|
|
|
|
/// If true, there was no ApplyPatchApprovalRequest for this patch.
|
|
|
|
|
|
pub auto_approved: bool,
|
|
|
|
|
|
/// The changes to be applied.
|
|
|
|
|
|
pub changes: HashMap<PathBuf, FileChange>,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct PatchApplyEndEvent {
|
|
|
|
|
|
/// Identifier for the PatchApplyBegin that finished.
|
|
|
|
|
|
pub call_id: String,
|
|
|
|
|
|
/// Captured stdout (summary printed by apply_patch).
|
|
|
|
|
|
pub stdout: String,
|
|
|
|
|
|
/// Captured stderr (parser errors, IO failures, etc.).
|
|
|
|
|
|
pub stderr: String,
|
|
|
|
|
|
/// Whether the patch was applied successfully.
|
|
|
|
|
|
pub success: bool,
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
}
|
|
|
|
|
|
|
feat: record messages from user in ~/.codex/history.jsonl (#939)
This is a large change to support a "history" feature like you would
expect in a shell like Bash.
History events are recorded in `$CODEX_HOME/history.jsonl`. Because it
is a JSONL file, it is straightforward to append new entries (as opposed
to the TypeScript file that uses `$CODEX_HOME/history.json`, so to be
valid JSON, each new entry entails rewriting the entire file). Because
it is possible for there to be multiple instances of Codex CLI writing
to `history.jsonl` at once, we use advisory file locking when working
with `history.jsonl` in `codex-rs/core/src/message_history.rs`.
Because we believe history is a sufficiently useful feature, we enable
it by default. Though to provide some safety, we set the file
permissions of `history.jsonl` to be `o600` so that other users on the
system cannot read the user's history. We do not yet support a default
list of `SENSITIVE_PATTERNS` as the TypeScript CLI does:
https://github.com/openai/codex/blob/3fdf9df1335ac9501e3fb0e61715359145711e8b/codex-cli/src/utils/storage/command-history.ts#L10-L17
We are going to take a more conservative approach to this list in the
Rust CLI. For example, while `/\b[A-Za-z0-9-_]{20,}\b/` might exclude
sensitive information like API tokens, it would also exclude valuable
information such as references to Git commits.
As noted in the updated documentation, users can opt-out of history by
adding the following to `config.toml`:
```toml
[history]
persistence = "none"
```
Because `history.jsonl` could, in theory, be quite large, we take a[n
arguably overly pedantic] approach in reading history entries into
memory. Specifically, we start by telling the client the current number
of entries in the history file (`history_entry_count`) as well as the
inode (`history_log_id`) of `history.jsonl` (see the new fields on
`SessionConfiguredEvent`).
The client is responsible for keeping new entries in memory to create a
"local history," but if the user hits up enough times to go "past" the
end of local history, then the client should use the new
`GetHistoryEntryRequest` in the protocol to fetch older entries.
Specifically, it should pass the `history_log_id` it was given
originally and work backwards from `history_entry_count`. (It should
really fetch history in batches rather than one-at-a-time, but that is
something we can improve upon in subsequent PRs.)
The motivation behind this crazy scheme is that it is designed to defend
against:
* The `history.jsonl` being truncated during the session such that the
index into the history is no longer consistent with what had been read
up to that point. We do not yet have logic to enforce a `max_bytes` for
`history.jsonl`, but once we do, we will aspire to implement it in a way
that should result in a new inode for the file on most systems.
* New items from concurrent Codex CLI sessions amending to the history.
Because, in absence of truncation, `history.jsonl` is an append-only
log, so long as the client reads backwards from `history_entry_count`,
it should always get a consistent view of history. (That said, it will
not be able to read _new_ commands from concurrent sessions, but perhaps
we will introduce a `/` command to reload latest history or something
down the road.)
Admittedly, my testing of this feature thus far has been fairly light. I
expect we will find bugs and introduce enhancements/fixes going forward.
2025-05-15 16:26:23 -07:00
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct GetHistoryEntryResponseEvent {
|
|
|
|
|
|
pub offset: usize,
|
|
|
|
|
|
pub log_id: u64,
|
|
|
|
|
|
/// The entry at the requested offset, if available and parseable.
|
|
|
|
|
|
#[serde(skip_serializing_if = "Option::is_none")]
|
|
|
|
|
|
pub entry: Option<HistoryEntry>,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
2025-05-13 19:22:16 -07:00
|
|
|
|
#[derive(Debug, Default, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct SessionConfiguredEvent {
|
|
|
|
|
|
/// Unique id for this session.
|
|
|
|
|
|
pub session_id: Uuid,
|
|
|
|
|
|
|
|
|
|
|
|
/// Tell the client what model is being queried.
|
|
|
|
|
|
pub model: String,
|
feat: record messages from user in ~/.codex/history.jsonl (#939)
This is a large change to support a "history" feature like you would
expect in a shell like Bash.
History events are recorded in `$CODEX_HOME/history.jsonl`. Because it
is a JSONL file, it is straightforward to append new entries (as opposed
to the TypeScript file that uses `$CODEX_HOME/history.json`, so to be
valid JSON, each new entry entails rewriting the entire file). Because
it is possible for there to be multiple instances of Codex CLI writing
to `history.jsonl` at once, we use advisory file locking when working
with `history.jsonl` in `codex-rs/core/src/message_history.rs`.
Because we believe history is a sufficiently useful feature, we enable
it by default. Though to provide some safety, we set the file
permissions of `history.jsonl` to be `o600` so that other users on the
system cannot read the user's history. We do not yet support a default
list of `SENSITIVE_PATTERNS` as the TypeScript CLI does:
https://github.com/openai/codex/blob/3fdf9df1335ac9501e3fb0e61715359145711e8b/codex-cli/src/utils/storage/command-history.ts#L10-L17
We are going to take a more conservative approach to this list in the
Rust CLI. For example, while `/\b[A-Za-z0-9-_]{20,}\b/` might exclude
sensitive information like API tokens, it would also exclude valuable
information such as references to Git commits.
As noted in the updated documentation, users can opt-out of history by
adding the following to `config.toml`:
```toml
[history]
persistence = "none"
```
Because `history.jsonl` could, in theory, be quite large, we take a[n
arguably overly pedantic] approach in reading history entries into
memory. Specifically, we start by telling the client the current number
of entries in the history file (`history_entry_count`) as well as the
inode (`history_log_id`) of `history.jsonl` (see the new fields on
`SessionConfiguredEvent`).
The client is responsible for keeping new entries in memory to create a
"local history," but if the user hits up enough times to go "past" the
end of local history, then the client should use the new
`GetHistoryEntryRequest` in the protocol to fetch older entries.
Specifically, it should pass the `history_log_id` it was given
originally and work backwards from `history_entry_count`. (It should
really fetch history in batches rather than one-at-a-time, but that is
something we can improve upon in subsequent PRs.)
The motivation behind this crazy scheme is that it is designed to defend
against:
* The `history.jsonl` being truncated during the session such that the
index into the history is no longer consistent with what had been read
up to that point. We do not yet have logic to enforce a `max_bytes` for
`history.jsonl`, but once we do, we will aspire to implement it in a way
that should result in a new inode for the file on most systems.
* New items from concurrent Codex CLI sessions amending to the history.
Because, in absence of truncation, `history.jsonl` is an append-only
log, so long as the client reads backwards from `history_entry_count`,
it should always get a consistent view of history. (That said, it will
not be able to read _new_ commands from concurrent sessions, but perhaps
we will introduce a `/` command to reload latest history or something
down the road.)
Admittedly, my testing of this feature thus far has been fairly light. I
expect we will find bugs and introduce enhancements/fixes going forward.
2025-05-15 16:26:23 -07:00
|
|
|
|
|
|
|
|
|
|
/// Identifier of the history log file (inode on Unix, 0 otherwise).
|
|
|
|
|
|
pub history_log_id: u64,
|
|
|
|
|
|
|
|
|
|
|
|
/// Current number of entries in the history log.
|
|
|
|
|
|
pub history_entry_count: usize,
|
2025-05-13 19:22:16 -07:00
|
|
|
|
}
|
|
|
|
|
|
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
/// User's decision in response to an ExecApprovalRequest.
|
feat: record messages from user in ~/.codex/history.jsonl (#939)
This is a large change to support a "history" feature like you would
expect in a shell like Bash.
History events are recorded in `$CODEX_HOME/history.jsonl`. Because it
is a JSONL file, it is straightforward to append new entries (as opposed
to the TypeScript file that uses `$CODEX_HOME/history.json`, so to be
valid JSON, each new entry entails rewriting the entire file). Because
it is possible for there to be multiple instances of Codex CLI writing
to `history.jsonl` at once, we use advisory file locking when working
with `history.jsonl` in `codex-rs/core/src/message_history.rs`.
Because we believe history is a sufficiently useful feature, we enable
it by default. Though to provide some safety, we set the file
permissions of `history.jsonl` to be `o600` so that other users on the
system cannot read the user's history. We do not yet support a default
list of `SENSITIVE_PATTERNS` as the TypeScript CLI does:
https://github.com/openai/codex/blob/3fdf9df1335ac9501e3fb0e61715359145711e8b/codex-cli/src/utils/storage/command-history.ts#L10-L17
We are going to take a more conservative approach to this list in the
Rust CLI. For example, while `/\b[A-Za-z0-9-_]{20,}\b/` might exclude
sensitive information like API tokens, it would also exclude valuable
information such as references to Git commits.
As noted in the updated documentation, users can opt-out of history by
adding the following to `config.toml`:
```toml
[history]
persistence = "none"
```
Because `history.jsonl` could, in theory, be quite large, we take a[n
arguably overly pedantic] approach in reading history entries into
memory. Specifically, we start by telling the client the current number
of entries in the history file (`history_entry_count`) as well as the
inode (`history_log_id`) of `history.jsonl` (see the new fields on
`SessionConfiguredEvent`).
The client is responsible for keeping new entries in memory to create a
"local history," but if the user hits up enough times to go "past" the
end of local history, then the client should use the new
`GetHistoryEntryRequest` in the protocol to fetch older entries.
Specifically, it should pass the `history_log_id` it was given
originally and work backwards from `history_entry_count`. (It should
really fetch history in batches rather than one-at-a-time, but that is
something we can improve upon in subsequent PRs.)
The motivation behind this crazy scheme is that it is designed to defend
against:
* The `history.jsonl` being truncated during the session such that the
index into the history is no longer consistent with what had been read
up to that point. We do not yet have logic to enforce a `max_bytes` for
`history.jsonl`, but once we do, we will aspire to implement it in a way
that should result in a new inode for the file on most systems.
* New items from concurrent Codex CLI sessions amending to the history.
Because, in absence of truncation, `history.jsonl` is an append-only
log, so long as the client reads backwards from `history_entry_count`,
it should always get a consistent view of history. (That said, it will
not be able to read _new_ commands from concurrent sessions, but perhaps
we will introduce a `/` command to reload latest history or something
down the road.)
Admittedly, my testing of this feature thus far has been fairly light. I
expect we will find bugs and introduce enhancements/fixes going forward.
2025-05-15 16:26:23 -07:00
|
|
|
|
#[derive(Debug, Default, Clone, Copy, Deserialize, Serialize, PartialEq, Eq)]
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
#[serde(rename_all = "snake_case")]
|
|
|
|
|
|
pub enum ReviewDecision {
|
|
|
|
|
|
/// User has approved this command and the agent should execute it.
|
|
|
|
|
|
Approved,
|
|
|
|
|
|
|
|
|
|
|
|
/// User has approved this command and wants to automatically approve any
|
|
|
|
|
|
/// future identical instances (`command` and `cwd` match exactly) for the
|
|
|
|
|
|
/// remainder of the session.
|
|
|
|
|
|
ApprovedForSession,
|
|
|
|
|
|
|
|
|
|
|
|
/// User has denied this command and the agent should not execute it, but
|
|
|
|
|
|
/// it should continue the session and try something else.
|
|
|
|
|
|
#[default]
|
|
|
|
|
|
Denied,
|
|
|
|
|
|
|
|
|
|
|
|
/// User has denied this command and the agent should not do anything until
|
|
|
|
|
|
/// the user's next command.
|
|
|
|
|
|
Abort,
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
#[serde(rename_all = "snake_case")]
|
|
|
|
|
|
pub enum FileChange {
|
|
|
|
|
|
Add {
|
|
|
|
|
|
content: String,
|
|
|
|
|
|
},
|
|
|
|
|
|
Delete,
|
|
|
|
|
|
Update {
|
|
|
|
|
|
unified_diff: String,
|
|
|
|
|
|
move_path: Option<PathBuf>,
|
|
|
|
|
|
},
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#[derive(Debug, Clone, Deserialize, Serialize)]
|
|
|
|
|
|
pub struct Chunk {
|
|
|
|
|
|
/// 1-based line index of the first line in the original file
|
|
|
|
|
|
pub orig_index: u32,
|
|
|
|
|
|
pub deleted_lines: Vec<String>,
|
|
|
|
|
|
pub inserted_lines: Vec<String>,
|
|
|
|
|
|
}
|
2025-05-13 20:44:42 -07:00
|
|
|
|
|
|
|
|
|
|
#[cfg(test)]
|
|
|
|
|
|
mod tests {
|
|
|
|
|
|
#![allow(clippy::unwrap_used)]
|
|
|
|
|
|
use super::*;
|
|
|
|
|
|
|
|
|
|
|
|
/// Serialize Event to verify that its JSON representation has the expected
|
|
|
|
|
|
/// amount of nesting.
|
|
|
|
|
|
#[test]
|
|
|
|
|
|
fn serialize_event() {
|
|
|
|
|
|
let session_id: Uuid = uuid::uuid!("67e55044-10b1-426f-9247-bb680e5fe0c8");
|
|
|
|
|
|
let event = Event {
|
|
|
|
|
|
id: "1234".to_string(),
|
|
|
|
|
|
msg: EventMsg::SessionConfigured(SessionConfiguredEvent {
|
|
|
|
|
|
session_id,
|
2025-05-29 16:55:19 -07:00
|
|
|
|
model: "codex-mini-latest".to_string(),
|
feat: record messages from user in ~/.codex/history.jsonl (#939)
This is a large change to support a "history" feature like you would
expect in a shell like Bash.
History events are recorded in `$CODEX_HOME/history.jsonl`. Because it
is a JSONL file, it is straightforward to append new entries (as opposed
to the TypeScript file that uses `$CODEX_HOME/history.json`, so to be
valid JSON, each new entry entails rewriting the entire file). Because
it is possible for there to be multiple instances of Codex CLI writing
to `history.jsonl` at once, we use advisory file locking when working
with `history.jsonl` in `codex-rs/core/src/message_history.rs`.
Because we believe history is a sufficiently useful feature, we enable
it by default. Though to provide some safety, we set the file
permissions of `history.jsonl` to be `o600` so that other users on the
system cannot read the user's history. We do not yet support a default
list of `SENSITIVE_PATTERNS` as the TypeScript CLI does:
https://github.com/openai/codex/blob/3fdf9df1335ac9501e3fb0e61715359145711e8b/codex-cli/src/utils/storage/command-history.ts#L10-L17
We are going to take a more conservative approach to this list in the
Rust CLI. For example, while `/\b[A-Za-z0-9-_]{20,}\b/` might exclude
sensitive information like API tokens, it would also exclude valuable
information such as references to Git commits.
As noted in the updated documentation, users can opt-out of history by
adding the following to `config.toml`:
```toml
[history]
persistence = "none"
```
Because `history.jsonl` could, in theory, be quite large, we take a[n
arguably overly pedantic] approach in reading history entries into
memory. Specifically, we start by telling the client the current number
of entries in the history file (`history_entry_count`) as well as the
inode (`history_log_id`) of `history.jsonl` (see the new fields on
`SessionConfiguredEvent`).
The client is responsible for keeping new entries in memory to create a
"local history," but if the user hits up enough times to go "past" the
end of local history, then the client should use the new
`GetHistoryEntryRequest` in the protocol to fetch older entries.
Specifically, it should pass the `history_log_id` it was given
originally and work backwards from `history_entry_count`. (It should
really fetch history in batches rather than one-at-a-time, but that is
something we can improve upon in subsequent PRs.)
The motivation behind this crazy scheme is that it is designed to defend
against:
* The `history.jsonl` being truncated during the session such that the
index into the history is no longer consistent with what had been read
up to that point. We do not yet have logic to enforce a `max_bytes` for
`history.jsonl`, but once we do, we will aspire to implement it in a way
that should result in a new inode for the file on most systems.
* New items from concurrent Codex CLI sessions amending to the history.
Because, in absence of truncation, `history.jsonl` is an append-only
log, so long as the client reads backwards from `history_entry_count`,
it should always get a consistent view of history. (That said, it will
not be able to read _new_ commands from concurrent sessions, but perhaps
we will introduce a `/` command to reload latest history or something
down the road.)
Admittedly, my testing of this feature thus far has been fairly light. I
expect we will find bugs and introduce enhancements/fixes going forward.
2025-05-15 16:26:23 -07:00
|
|
|
|
history_log_id: 0,
|
|
|
|
|
|
history_entry_count: 0,
|
2025-05-13 20:44:42 -07:00
|
|
|
|
}),
|
|
|
|
|
|
};
|
|
|
|
|
|
let serialized = serde_json::to_string(&event).unwrap();
|
|
|
|
|
|
assert_eq!(
|
|
|
|
|
|
serialized,
|
2025-05-29 16:55:19 -07:00
|
|
|
|
r#"{"id":"1234","msg":{"type":"session_configured","session_id":"67e55044-10b1-426f-9247-bb680e5fe0c8","model":"codex-mini-latest","history_log_id":0,"history_entry_count":0}}"#
|
2025-05-13 20:44:42 -07:00
|
|
|
|
);
|
|
|
|
|
|
}
|
|
|
|
|
|
}
|