feat: Complete LLMX v0.1.0 - Rebrand from Codex with LiteLLM Integration
This release represents a comprehensive transformation of the codebase from Codex to LLMX,
enhanced with LiteLLM integration to support 100+ LLM providers through a unified API.
## Major Changes
### Phase 1: Repository & Infrastructure Setup
- Established new repository structure and branching strategy
- Created comprehensive project documentation (CLAUDE.md, LITELLM-SETUP.md)
- Set up development environment and tooling configuration
### Phase 2: Rust Workspace Transformation
- Renamed all Rust crates from `codex-*` to `llmx-*` (30+ crates)
- Updated package names, binary names, and workspace members
- Renamed core modules: codex.rs → llmx.rs, codex_delegate.rs → llmx_delegate.rs
- Updated all internal references, imports, and type names
- Renamed directories: codex-rs/ → llmx-rs/, codex-backend-openapi-models/ → llmx-backend-openapi-models/
- Fixed all Rust compilation errors after mass rename
### Phase 3: LiteLLM Integration
- Integrated LiteLLM for multi-provider LLM support (Anthropic, OpenAI, Azure, Google AI, AWS Bedrock, etc.)
- Implemented OpenAI-compatible Chat Completions API support
- Added model family detection and provider-specific handling
- Updated authentication to support LiteLLM API keys
- Renamed environment variables: OPENAI_BASE_URL → LLMX_BASE_URL
- Added LLMX_API_KEY for unified authentication
- Enhanced error handling for Chat Completions API responses
- Implemented fallback mechanisms between Responses API and Chat Completions API
### Phase 4: TypeScript/Node.js Components
- Renamed npm package: @codex/codex-cli → @valknar/llmx
- Updated TypeScript SDK to use new LLMX APIs and endpoints
- Fixed all TypeScript compilation and linting errors
- Updated SDK tests to support both API backends
- Enhanced mock server to handle multiple API formats
- Updated build scripts for cross-platform packaging
### Phase 5: Configuration & Documentation
- Updated all configuration files to use LLMX naming
- Rewrote README and documentation for LLMX branding
- Updated config paths: ~/.codex/ → ~/.llmx/
- Added comprehensive LiteLLM setup guide
- Updated all user-facing strings and help text
- Created release plan and migration documentation
### Phase 6: Testing & Validation
- Fixed all Rust tests for new naming scheme
- Updated snapshot tests in TUI (36 frame files)
- Fixed authentication storage tests
- Updated Chat Completions payload and SSE tests
- Fixed SDK tests for new API endpoints
- Ensured compatibility with Claude Sonnet 4.5 model
- Fixed test environment variables (LLMX_API_KEY, LLMX_BASE_URL)
### Phase 7: Build & Release Pipeline
- Updated GitHub Actions workflows for LLMX binary names
- Fixed rust-release.yml to reference llmx-rs/ instead of codex-rs/
- Updated CI/CD pipelines for new package names
- Made Apple code signing optional in release workflow
- Enhanced npm packaging resilience for partial platform builds
- Added Windows sandbox support to workspace
- Updated dotslash configuration for new binary names
### Phase 8: Final Polish
- Renamed all assets (.github images, labels, templates)
- Updated VSCode and DevContainer configurations
- Fixed all clippy warnings and formatting issues
- Applied cargo fmt and prettier formatting across codebase
- Updated issue templates and pull request templates
- Fixed all remaining UI text references
## Technical Details
**Breaking Changes:**
- Binary name changed from `codex` to `llmx`
- Config directory changed from `~/.codex/` to `~/.llmx/`
- Environment variables renamed (CODEX_* → LLMX_*)
- npm package renamed to `@valknar/llmx`
**New Features:**
- Support for 100+ LLM providers via LiteLLM
- Unified authentication with LLMX_API_KEY
- Enhanced model provider detection and handling
- Improved error handling and fallback mechanisms
**Files Changed:**
- 578 files modified across Rust, TypeScript, and documentation
- 30+ Rust crates renamed and updated
- Complete rebrand of UI, CLI, and documentation
- All tests updated and passing
**Dependencies:**
- Updated Cargo.lock with new package names
- Updated npm dependencies in llmx-cli
- Enhanced OpenAPI models for LLMX backend
This release establishes LLMX as a standalone project with comprehensive LiteLLM
integration, maintaining full backward compatibility with existing functionality
while opening support for a wide ecosystem of LLM providers.
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
Co-Authored-By: Sebastian Krüger <support@pivoine.art>
2025-11-12 20:40:44 +01:00
|
|
|
//! Entry-point for the `llmx-exec` binary.
|
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086)
Historically, we spawned the Seatbelt and Landlock sandboxes in
substantially different ways:
For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy
specified as an arg followed by the original command:
https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219
For **Landlock/Seccomp**, we would do
`tokio::runtime::Builder::new_current_thread()`, _invoke
Landlock/Seccomp APIs to modify the permissions of that new thread_, and
then spawn the command:
https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49
While it is neat that Landlock/Seccomp supports applying a policy to
only one thread without having to apply it to the entire process, it
requires us to maintain two different codepaths and is a bit harder to
reason about. The tipping point was
https://github.com/openai/codex/pull/1061, in which we had to start
building up the `env` in an unexpected way for the existing
Landlock/Seccomp approach to continue to work.
This PR overhauls things so that we do similar things for Mac and Linux.
It turned out that we were already building our own "helper binary"
comparable to Mac's `sandbox-exec` as part of the `cli` crate:
https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12
We originally created this to build a small binary to include with the
Node.js version of the Codex CLI to provide support for Linux
sandboxing.
Though the sticky bit is that, at this point, we still want to deploy
the Rust version of Codex as a single, standalone binary rather than a
CLI and a supporting sandboxing binary. To satisfy this goal, we use
"the arg0 trick," in which we:
* use `std::env::current_exe()` to get the path to the CLI that is
currently running
* use the CLI as the `program` for the `Command`
* set `"codex-linux-sandbox"` as arg0 for the `Command`
A CLI that supports sandboxing should check arg0 at the start of the
program. If it is `"codex-linux-sandbox"`, it must invoke
`codex_linux_sandbox::run_main()`, which runs the CLI as if it were
`codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the
appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn
the original command, so do _replace_ the process rather than spawn a
subprocess. Incidentally, we do this before starting the Tokio runtime,
so the process should only have one thread when `execvp(3)` is called.
Because the `core` crate that needs to spawn the Linux sandboxing is not
a CLI in its own right, this means that every CLI that includes `core`
and relies on this behavior has to (1) implement it and (2) provide the
path to the sandboxing executable. While the path is almost always
`std::env::current_exe()`, we needed to make this configurable for
integration tests, so `Config` now has a `codex_linux_sandbox_exe:
Option<PathBuf>` property to facilitate threading this through,
introduced in https://github.com/openai/codex/pull/1089.
This common pattern is now captured in
`codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs`
functions that should use it have been updated as part of this PR.
The `codex-linux-sandbox` crate added to the Cargo workspace as part of
this PR now has the bulk of the Landlock/Seccomp logic, which makes
`core` a bit simpler. Indeed, `core/src/exec_linux.rs` and
`core/src/landlock.rs` were removed/ported as part of this PR. I also
moved the unit tests for this code into an integration test,
`linux-sandbox/tests/landlock.rs`, in which I use
`env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for
`codex_linux_sandbox_exe` since `std::env::current_exe()` is not
appropriate in that case.
2025-05-23 11:37:07 -07:00
|
|
|
//!
|
feat: Complete LLMX v0.1.0 - Rebrand from Codex with LiteLLM Integration
This release represents a comprehensive transformation of the codebase from Codex to LLMX,
enhanced with LiteLLM integration to support 100+ LLM providers through a unified API.
## Major Changes
### Phase 1: Repository & Infrastructure Setup
- Established new repository structure and branching strategy
- Created comprehensive project documentation (CLAUDE.md, LITELLM-SETUP.md)
- Set up development environment and tooling configuration
### Phase 2: Rust Workspace Transformation
- Renamed all Rust crates from `codex-*` to `llmx-*` (30+ crates)
- Updated package names, binary names, and workspace members
- Renamed core modules: codex.rs → llmx.rs, codex_delegate.rs → llmx_delegate.rs
- Updated all internal references, imports, and type names
- Renamed directories: codex-rs/ → llmx-rs/, codex-backend-openapi-models/ → llmx-backend-openapi-models/
- Fixed all Rust compilation errors after mass rename
### Phase 3: LiteLLM Integration
- Integrated LiteLLM for multi-provider LLM support (Anthropic, OpenAI, Azure, Google AI, AWS Bedrock, etc.)
- Implemented OpenAI-compatible Chat Completions API support
- Added model family detection and provider-specific handling
- Updated authentication to support LiteLLM API keys
- Renamed environment variables: OPENAI_BASE_URL → LLMX_BASE_URL
- Added LLMX_API_KEY for unified authentication
- Enhanced error handling for Chat Completions API responses
- Implemented fallback mechanisms between Responses API and Chat Completions API
### Phase 4: TypeScript/Node.js Components
- Renamed npm package: @codex/codex-cli → @valknar/llmx
- Updated TypeScript SDK to use new LLMX APIs and endpoints
- Fixed all TypeScript compilation and linting errors
- Updated SDK tests to support both API backends
- Enhanced mock server to handle multiple API formats
- Updated build scripts for cross-platform packaging
### Phase 5: Configuration & Documentation
- Updated all configuration files to use LLMX naming
- Rewrote README and documentation for LLMX branding
- Updated config paths: ~/.codex/ → ~/.llmx/
- Added comprehensive LiteLLM setup guide
- Updated all user-facing strings and help text
- Created release plan and migration documentation
### Phase 6: Testing & Validation
- Fixed all Rust tests for new naming scheme
- Updated snapshot tests in TUI (36 frame files)
- Fixed authentication storage tests
- Updated Chat Completions payload and SSE tests
- Fixed SDK tests for new API endpoints
- Ensured compatibility with Claude Sonnet 4.5 model
- Fixed test environment variables (LLMX_API_KEY, LLMX_BASE_URL)
### Phase 7: Build & Release Pipeline
- Updated GitHub Actions workflows for LLMX binary names
- Fixed rust-release.yml to reference llmx-rs/ instead of codex-rs/
- Updated CI/CD pipelines for new package names
- Made Apple code signing optional in release workflow
- Enhanced npm packaging resilience for partial platform builds
- Added Windows sandbox support to workspace
- Updated dotslash configuration for new binary names
### Phase 8: Final Polish
- Renamed all assets (.github images, labels, templates)
- Updated VSCode and DevContainer configurations
- Fixed all clippy warnings and formatting issues
- Applied cargo fmt and prettier formatting across codebase
- Updated issue templates and pull request templates
- Fixed all remaining UI text references
## Technical Details
**Breaking Changes:**
- Binary name changed from `codex` to `llmx`
- Config directory changed from `~/.codex/` to `~/.llmx/`
- Environment variables renamed (CODEX_* → LLMX_*)
- npm package renamed to `@valknar/llmx`
**New Features:**
- Support for 100+ LLM providers via LiteLLM
- Unified authentication with LLMX_API_KEY
- Enhanced model provider detection and handling
- Improved error handling and fallback mechanisms
**Files Changed:**
- 578 files modified across Rust, TypeScript, and documentation
- 30+ Rust crates renamed and updated
- Complete rebrand of UI, CLI, and documentation
- All tests updated and passing
**Dependencies:**
- Updated Cargo.lock with new package names
- Updated npm dependencies in llmx-cli
- Enhanced OpenAPI models for LLMX backend
This release establishes LLMX as a standalone project with comprehensive LiteLLM
integration, maintaining full backward compatibility with existing functionality
while opening support for a wide ecosystem of LLM providers.
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
Co-Authored-By: Sebastian Krüger <support@pivoine.art>
2025-11-12 20:40:44 +01:00
|
|
|
//! When this CLI is invoked normally, it parses the standard `llmx-exec` CLI
|
|
|
|
|
//! options and launches the non-interactive LLMX agent. However, if it is
|
|
|
|
|
//! invoked with arg0 as `llmx-linux-sandbox`, we instead treat the invocation
|
|
|
|
|
//! as a request to run the logic for the standalone `llmx-linux-sandbox`
|
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086)
Historically, we spawned the Seatbelt and Landlock sandboxes in
substantially different ways:
For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy
specified as an arg followed by the original command:
https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219
For **Landlock/Seccomp**, we would do
`tokio::runtime::Builder::new_current_thread()`, _invoke
Landlock/Seccomp APIs to modify the permissions of that new thread_, and
then spawn the command:
https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49
While it is neat that Landlock/Seccomp supports applying a policy to
only one thread without having to apply it to the entire process, it
requires us to maintain two different codepaths and is a bit harder to
reason about. The tipping point was
https://github.com/openai/codex/pull/1061, in which we had to start
building up the `env` in an unexpected way for the existing
Landlock/Seccomp approach to continue to work.
This PR overhauls things so that we do similar things for Mac and Linux.
It turned out that we were already building our own "helper binary"
comparable to Mac's `sandbox-exec` as part of the `cli` crate:
https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12
We originally created this to build a small binary to include with the
Node.js version of the Codex CLI to provide support for Linux
sandboxing.
Though the sticky bit is that, at this point, we still want to deploy
the Rust version of Codex as a single, standalone binary rather than a
CLI and a supporting sandboxing binary. To satisfy this goal, we use
"the arg0 trick," in which we:
* use `std::env::current_exe()` to get the path to the CLI that is
currently running
* use the CLI as the `program` for the `Command`
* set `"codex-linux-sandbox"` as arg0 for the `Command`
A CLI that supports sandboxing should check arg0 at the start of the
program. If it is `"codex-linux-sandbox"`, it must invoke
`codex_linux_sandbox::run_main()`, which runs the CLI as if it were
`codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the
appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn
the original command, so do _replace_ the process rather than spawn a
subprocess. Incidentally, we do this before starting the Tokio runtime,
so the process should only have one thread when `execvp(3)` is called.
Because the `core` crate that needs to spawn the Linux sandboxing is not
a CLI in its own right, this means that every CLI that includes `core`
and relies on this behavior has to (1) implement it and (2) provide the
path to the sandboxing executable. While the path is almost always
`std::env::current_exe()`, we needed to make this configurable for
integration tests, so `Config` now has a `codex_linux_sandbox_exe:
Option<PathBuf>` property to facilitate threading this through,
introduced in https://github.com/openai/codex/pull/1089.
This common pattern is now captured in
`codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs`
functions that should use it have been updated as part of this PR.
The `codex-linux-sandbox` crate added to the Cargo workspace as part of
this PR now has the bulk of the Landlock/Seccomp logic, which makes
`core` a bit simpler. Indeed, `core/src/exec_linux.rs` and
`core/src/landlock.rs` were removed/ported as part of this PR. I also
moved the unit tests for this code into an integration test,
`linux-sandbox/tests/landlock.rs`, in which I use
`env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for
`codex_linux_sandbox_exe` since `std::env::current_exe()` is not
appropriate in that case.
2025-05-23 11:37:07 -07:00
|
|
|
//! executable (i.e., parse any -s args and then run a *sandboxed* command under
|
|
|
|
|
//! Landlock + seccomp.
|
|
|
|
|
//!
|
|
|
|
|
//! This allows us to ship a completely separate set of functionality as part
|
feat: Complete LLMX v0.1.0 - Rebrand from Codex with LiteLLM Integration
This release represents a comprehensive transformation of the codebase from Codex to LLMX,
enhanced with LiteLLM integration to support 100+ LLM providers through a unified API.
## Major Changes
### Phase 1: Repository & Infrastructure Setup
- Established new repository structure and branching strategy
- Created comprehensive project documentation (CLAUDE.md, LITELLM-SETUP.md)
- Set up development environment and tooling configuration
### Phase 2: Rust Workspace Transformation
- Renamed all Rust crates from `codex-*` to `llmx-*` (30+ crates)
- Updated package names, binary names, and workspace members
- Renamed core modules: codex.rs → llmx.rs, codex_delegate.rs → llmx_delegate.rs
- Updated all internal references, imports, and type names
- Renamed directories: codex-rs/ → llmx-rs/, codex-backend-openapi-models/ → llmx-backend-openapi-models/
- Fixed all Rust compilation errors after mass rename
### Phase 3: LiteLLM Integration
- Integrated LiteLLM for multi-provider LLM support (Anthropic, OpenAI, Azure, Google AI, AWS Bedrock, etc.)
- Implemented OpenAI-compatible Chat Completions API support
- Added model family detection and provider-specific handling
- Updated authentication to support LiteLLM API keys
- Renamed environment variables: OPENAI_BASE_URL → LLMX_BASE_URL
- Added LLMX_API_KEY for unified authentication
- Enhanced error handling for Chat Completions API responses
- Implemented fallback mechanisms between Responses API and Chat Completions API
### Phase 4: TypeScript/Node.js Components
- Renamed npm package: @codex/codex-cli → @valknar/llmx
- Updated TypeScript SDK to use new LLMX APIs and endpoints
- Fixed all TypeScript compilation and linting errors
- Updated SDK tests to support both API backends
- Enhanced mock server to handle multiple API formats
- Updated build scripts for cross-platform packaging
### Phase 5: Configuration & Documentation
- Updated all configuration files to use LLMX naming
- Rewrote README and documentation for LLMX branding
- Updated config paths: ~/.codex/ → ~/.llmx/
- Added comprehensive LiteLLM setup guide
- Updated all user-facing strings and help text
- Created release plan and migration documentation
### Phase 6: Testing & Validation
- Fixed all Rust tests for new naming scheme
- Updated snapshot tests in TUI (36 frame files)
- Fixed authentication storage tests
- Updated Chat Completions payload and SSE tests
- Fixed SDK tests for new API endpoints
- Ensured compatibility with Claude Sonnet 4.5 model
- Fixed test environment variables (LLMX_API_KEY, LLMX_BASE_URL)
### Phase 7: Build & Release Pipeline
- Updated GitHub Actions workflows for LLMX binary names
- Fixed rust-release.yml to reference llmx-rs/ instead of codex-rs/
- Updated CI/CD pipelines for new package names
- Made Apple code signing optional in release workflow
- Enhanced npm packaging resilience for partial platform builds
- Added Windows sandbox support to workspace
- Updated dotslash configuration for new binary names
### Phase 8: Final Polish
- Renamed all assets (.github images, labels, templates)
- Updated VSCode and DevContainer configurations
- Fixed all clippy warnings and formatting issues
- Applied cargo fmt and prettier formatting across codebase
- Updated issue templates and pull request templates
- Fixed all remaining UI text references
## Technical Details
**Breaking Changes:**
- Binary name changed from `codex` to `llmx`
- Config directory changed from `~/.codex/` to `~/.llmx/`
- Environment variables renamed (CODEX_* → LLMX_*)
- npm package renamed to `@valknar/llmx`
**New Features:**
- Support for 100+ LLM providers via LiteLLM
- Unified authentication with LLMX_API_KEY
- Enhanced model provider detection and handling
- Improved error handling and fallback mechanisms
**Files Changed:**
- 578 files modified across Rust, TypeScript, and documentation
- 30+ Rust crates renamed and updated
- Complete rebrand of UI, CLI, and documentation
- All tests updated and passing
**Dependencies:**
- Updated Cargo.lock with new package names
- Updated npm dependencies in llmx-cli
- Enhanced OpenAPI models for LLMX backend
This release establishes LLMX as a standalone project with comprehensive LiteLLM
integration, maintaining full backward compatibility with existing functionality
while opening support for a wide ecosystem of LLM providers.
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
Co-Authored-By: Sebastian Krüger <support@pivoine.art>
2025-11-12 20:40:44 +01:00
|
|
|
//! of the `llmx-exec` binary.
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
use clap::Parser;
|
feat: Complete LLMX v0.1.0 - Rebrand from Codex with LiteLLM Integration
This release represents a comprehensive transformation of the codebase from Codex to LLMX,
enhanced with LiteLLM integration to support 100+ LLM providers through a unified API.
## Major Changes
### Phase 1: Repository & Infrastructure Setup
- Established new repository structure and branching strategy
- Created comprehensive project documentation (CLAUDE.md, LITELLM-SETUP.md)
- Set up development environment and tooling configuration
### Phase 2: Rust Workspace Transformation
- Renamed all Rust crates from `codex-*` to `llmx-*` (30+ crates)
- Updated package names, binary names, and workspace members
- Renamed core modules: codex.rs → llmx.rs, codex_delegate.rs → llmx_delegate.rs
- Updated all internal references, imports, and type names
- Renamed directories: codex-rs/ → llmx-rs/, codex-backend-openapi-models/ → llmx-backend-openapi-models/
- Fixed all Rust compilation errors after mass rename
### Phase 3: LiteLLM Integration
- Integrated LiteLLM for multi-provider LLM support (Anthropic, OpenAI, Azure, Google AI, AWS Bedrock, etc.)
- Implemented OpenAI-compatible Chat Completions API support
- Added model family detection and provider-specific handling
- Updated authentication to support LiteLLM API keys
- Renamed environment variables: OPENAI_BASE_URL → LLMX_BASE_URL
- Added LLMX_API_KEY for unified authentication
- Enhanced error handling for Chat Completions API responses
- Implemented fallback mechanisms between Responses API and Chat Completions API
### Phase 4: TypeScript/Node.js Components
- Renamed npm package: @codex/codex-cli → @valknar/llmx
- Updated TypeScript SDK to use new LLMX APIs and endpoints
- Fixed all TypeScript compilation and linting errors
- Updated SDK tests to support both API backends
- Enhanced mock server to handle multiple API formats
- Updated build scripts for cross-platform packaging
### Phase 5: Configuration & Documentation
- Updated all configuration files to use LLMX naming
- Rewrote README and documentation for LLMX branding
- Updated config paths: ~/.codex/ → ~/.llmx/
- Added comprehensive LiteLLM setup guide
- Updated all user-facing strings and help text
- Created release plan and migration documentation
### Phase 6: Testing & Validation
- Fixed all Rust tests for new naming scheme
- Updated snapshot tests in TUI (36 frame files)
- Fixed authentication storage tests
- Updated Chat Completions payload and SSE tests
- Fixed SDK tests for new API endpoints
- Ensured compatibility with Claude Sonnet 4.5 model
- Fixed test environment variables (LLMX_API_KEY, LLMX_BASE_URL)
### Phase 7: Build & Release Pipeline
- Updated GitHub Actions workflows for LLMX binary names
- Fixed rust-release.yml to reference llmx-rs/ instead of codex-rs/
- Updated CI/CD pipelines for new package names
- Made Apple code signing optional in release workflow
- Enhanced npm packaging resilience for partial platform builds
- Added Windows sandbox support to workspace
- Updated dotslash configuration for new binary names
### Phase 8: Final Polish
- Renamed all assets (.github images, labels, templates)
- Updated VSCode and DevContainer configurations
- Fixed all clippy warnings and formatting issues
- Applied cargo fmt and prettier formatting across codebase
- Updated issue templates and pull request templates
- Fixed all remaining UI text references
## Technical Details
**Breaking Changes:**
- Binary name changed from `codex` to `llmx`
- Config directory changed from `~/.codex/` to `~/.llmx/`
- Environment variables renamed (CODEX_* → LLMX_*)
- npm package renamed to `@valknar/llmx`
**New Features:**
- Support for 100+ LLM providers via LiteLLM
- Unified authentication with LLMX_API_KEY
- Enhanced model provider detection and handling
- Improved error handling and fallback mechanisms
**Files Changed:**
- 578 files modified across Rust, TypeScript, and documentation
- 30+ Rust crates renamed and updated
- Complete rebrand of UI, CLI, and documentation
- All tests updated and passing
**Dependencies:**
- Updated Cargo.lock with new package names
- Updated npm dependencies in llmx-cli
- Enhanced OpenAPI models for LLMX backend
This release establishes LLMX as a standalone project with comprehensive LiteLLM
integration, maintaining full backward compatibility with existing functionality
while opening support for a wide ecosystem of LLM providers.
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
Co-Authored-By: Sebastian Krüger <support@pivoine.art>
2025-11-12 20:40:44 +01:00
|
|
|
use llmx_arg0::arg0_dispatch_or_else;
|
|
|
|
|
use llmx_common::CliConfigOverrides;
|
|
|
|
|
use llmx_exec::Cli;
|
|
|
|
|
use llmx_exec::run_main;
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
|
feat: add support for -c/--config to override individual config items (#1137)
This PR introduces support for `-c`/`--config` so users can override
individual config values on the command line using `--config
name=value`. Example:
```
codex --config model=o4-mini
```
Making it possible to set arbitrary config values on the command line
results in a more flexible configuration scheme and makes it easier to
provide single-line examples that can be copy-pasted from documentation.
Effectively, it means there are four levels of configuration for some
values:
- Default value (e.g., `model` currently defaults to `o4-mini`)
- Value in `config.toml` (e.g., user could override the default to be
`model = "o3"` in their `config.toml`)
- Specifying `-c` or `--config` to override `model` (e.g., user can
include `-c model=o3` in their list of args to Codex)
- If available, a config-specific flag can be used, which takes
precedence over `-c` (e.g., user can specify `--model o3` in their list
of args to Codex)
Now that it is possible to specify anything that could be configured in
`config.toml` on the command line using `-c`, we do not need to have a
custom flag for every possible config option (which can clutter the
output of `--help`). To that end, as part of this PR, we drop support
for the `--disable-response-storage` flag, as users can now specify `-c
disable_response_storage=true` to get the equivalent functionality.
Under the hood, this works by loading the `config.toml` into a
`toml::Value`. Then for each `key=value`, we create a small synthetic
TOML file with `value` so that we can run the TOML parser to get the
equivalent `toml::Value`. We then parse `key` to determine the point in
the original `toml::Value` to do the insert/replace. Once all of the
overrides from `-c` args have been applied, the `toml::Value` is
deserialized into a `ConfigToml` and then the `ConfigOverrides` are
applied, as before.
2025-05-27 23:11:44 -07:00
|
|
|
#[derive(Parser, Debug)]
|
|
|
|
|
struct TopCli {
|
|
|
|
|
#[clap(flatten)]
|
|
|
|
|
config_overrides: CliConfigOverrides,
|
|
|
|
|
|
|
|
|
|
#[clap(flatten)]
|
|
|
|
|
inner: Cli,
|
|
|
|
|
}
|
|
|
|
|
|
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086)
Historically, we spawned the Seatbelt and Landlock sandboxes in
substantially different ways:
For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy
specified as an arg followed by the original command:
https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219
For **Landlock/Seccomp**, we would do
`tokio::runtime::Builder::new_current_thread()`, _invoke
Landlock/Seccomp APIs to modify the permissions of that new thread_, and
then spawn the command:
https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49
While it is neat that Landlock/Seccomp supports applying a policy to
only one thread without having to apply it to the entire process, it
requires us to maintain two different codepaths and is a bit harder to
reason about. The tipping point was
https://github.com/openai/codex/pull/1061, in which we had to start
building up the `env` in an unexpected way for the existing
Landlock/Seccomp approach to continue to work.
This PR overhauls things so that we do similar things for Mac and Linux.
It turned out that we were already building our own "helper binary"
comparable to Mac's `sandbox-exec` as part of the `cli` crate:
https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12
We originally created this to build a small binary to include with the
Node.js version of the Codex CLI to provide support for Linux
sandboxing.
Though the sticky bit is that, at this point, we still want to deploy
the Rust version of Codex as a single, standalone binary rather than a
CLI and a supporting sandboxing binary. To satisfy this goal, we use
"the arg0 trick," in which we:
* use `std::env::current_exe()` to get the path to the CLI that is
currently running
* use the CLI as the `program` for the `Command`
* set `"codex-linux-sandbox"` as arg0 for the `Command`
A CLI that supports sandboxing should check arg0 at the start of the
program. If it is `"codex-linux-sandbox"`, it must invoke
`codex_linux_sandbox::run_main()`, which runs the CLI as if it were
`codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the
appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn
the original command, so do _replace_ the process rather than spawn a
subprocess. Incidentally, we do this before starting the Tokio runtime,
so the process should only have one thread when `execvp(3)` is called.
Because the `core` crate that needs to spawn the Linux sandboxing is not
a CLI in its own right, this means that every CLI that includes `core`
and relies on this behavior has to (1) implement it and (2) provide the
path to the sandboxing executable. While the path is almost always
`std::env::current_exe()`, we needed to make this configurable for
integration tests, so `Config` now has a `codex_linux_sandbox_exe:
Option<PathBuf>` property to facilitate threading this through,
introduced in https://github.com/openai/codex/pull/1089.
This common pattern is now captured in
`codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs`
functions that should use it have been updated as part of this PR.
The `codex-linux-sandbox` crate added to the Cargo workspace as part of
this PR now has the bulk of the Landlock/Seccomp logic, which makes
`core` a bit simpler. Indeed, `core/src/exec_linux.rs` and
`core/src/landlock.rs` were removed/ported as part of this PR. I also
moved the unit tests for this code into an integration test,
`linux-sandbox/tests/landlock.rs`, in which I use
`env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for
`codex_linux_sandbox_exe` since `std::env::current_exe()` is not
appropriate in that case.
2025-05-23 11:37:07 -07:00
|
|
|
fn main() -> anyhow::Result<()> {
|
feat: Complete LLMX v0.1.0 - Rebrand from Codex with LiteLLM Integration
This release represents a comprehensive transformation of the codebase from Codex to LLMX,
enhanced with LiteLLM integration to support 100+ LLM providers through a unified API.
## Major Changes
### Phase 1: Repository & Infrastructure Setup
- Established new repository structure and branching strategy
- Created comprehensive project documentation (CLAUDE.md, LITELLM-SETUP.md)
- Set up development environment and tooling configuration
### Phase 2: Rust Workspace Transformation
- Renamed all Rust crates from `codex-*` to `llmx-*` (30+ crates)
- Updated package names, binary names, and workspace members
- Renamed core modules: codex.rs → llmx.rs, codex_delegate.rs → llmx_delegate.rs
- Updated all internal references, imports, and type names
- Renamed directories: codex-rs/ → llmx-rs/, codex-backend-openapi-models/ → llmx-backend-openapi-models/
- Fixed all Rust compilation errors after mass rename
### Phase 3: LiteLLM Integration
- Integrated LiteLLM for multi-provider LLM support (Anthropic, OpenAI, Azure, Google AI, AWS Bedrock, etc.)
- Implemented OpenAI-compatible Chat Completions API support
- Added model family detection and provider-specific handling
- Updated authentication to support LiteLLM API keys
- Renamed environment variables: OPENAI_BASE_URL → LLMX_BASE_URL
- Added LLMX_API_KEY for unified authentication
- Enhanced error handling for Chat Completions API responses
- Implemented fallback mechanisms between Responses API and Chat Completions API
### Phase 4: TypeScript/Node.js Components
- Renamed npm package: @codex/codex-cli → @valknar/llmx
- Updated TypeScript SDK to use new LLMX APIs and endpoints
- Fixed all TypeScript compilation and linting errors
- Updated SDK tests to support both API backends
- Enhanced mock server to handle multiple API formats
- Updated build scripts for cross-platform packaging
### Phase 5: Configuration & Documentation
- Updated all configuration files to use LLMX naming
- Rewrote README and documentation for LLMX branding
- Updated config paths: ~/.codex/ → ~/.llmx/
- Added comprehensive LiteLLM setup guide
- Updated all user-facing strings and help text
- Created release plan and migration documentation
### Phase 6: Testing & Validation
- Fixed all Rust tests for new naming scheme
- Updated snapshot tests in TUI (36 frame files)
- Fixed authentication storage tests
- Updated Chat Completions payload and SSE tests
- Fixed SDK tests for new API endpoints
- Ensured compatibility with Claude Sonnet 4.5 model
- Fixed test environment variables (LLMX_API_KEY, LLMX_BASE_URL)
### Phase 7: Build & Release Pipeline
- Updated GitHub Actions workflows for LLMX binary names
- Fixed rust-release.yml to reference llmx-rs/ instead of codex-rs/
- Updated CI/CD pipelines for new package names
- Made Apple code signing optional in release workflow
- Enhanced npm packaging resilience for partial platform builds
- Added Windows sandbox support to workspace
- Updated dotslash configuration for new binary names
### Phase 8: Final Polish
- Renamed all assets (.github images, labels, templates)
- Updated VSCode and DevContainer configurations
- Fixed all clippy warnings and formatting issues
- Applied cargo fmt and prettier formatting across codebase
- Updated issue templates and pull request templates
- Fixed all remaining UI text references
## Technical Details
**Breaking Changes:**
- Binary name changed from `codex` to `llmx`
- Config directory changed from `~/.codex/` to `~/.llmx/`
- Environment variables renamed (CODEX_* → LLMX_*)
- npm package renamed to `@valknar/llmx`
**New Features:**
- Support for 100+ LLM providers via LiteLLM
- Unified authentication with LLMX_API_KEY
- Enhanced model provider detection and handling
- Improved error handling and fallback mechanisms
**Files Changed:**
- 578 files modified across Rust, TypeScript, and documentation
- 30+ Rust crates renamed and updated
- Complete rebrand of UI, CLI, and documentation
- All tests updated and passing
**Dependencies:**
- Updated Cargo.lock with new package names
- Updated npm dependencies in llmx-cli
- Enhanced OpenAPI models for LLMX backend
This release establishes LLMX as a standalone project with comprehensive LiteLLM
integration, maintaining full backward compatibility with existing functionality
while opening support for a wide ecosystem of LLM providers.
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
Co-Authored-By: Sebastian Krüger <support@pivoine.art>
2025-11-12 20:40:44 +01:00
|
|
|
arg0_dispatch_or_else(|llmx_linux_sandbox_exe| async move {
|
feat: add support for -c/--config to override individual config items (#1137)
This PR introduces support for `-c`/`--config` so users can override
individual config values on the command line using `--config
name=value`. Example:
```
codex --config model=o4-mini
```
Making it possible to set arbitrary config values on the command line
results in a more flexible configuration scheme and makes it easier to
provide single-line examples that can be copy-pasted from documentation.
Effectively, it means there are four levels of configuration for some
values:
- Default value (e.g., `model` currently defaults to `o4-mini`)
- Value in `config.toml` (e.g., user could override the default to be
`model = "o3"` in their `config.toml`)
- Specifying `-c` or `--config` to override `model` (e.g., user can
include `-c model=o3` in their list of args to Codex)
- If available, a config-specific flag can be used, which takes
precedence over `-c` (e.g., user can specify `--model o3` in their list
of args to Codex)
Now that it is possible to specify anything that could be configured in
`config.toml` on the command line using `-c`, we do not need to have a
custom flag for every possible config option (which can clutter the
output of `--help`). To that end, as part of this PR, we drop support
for the `--disable-response-storage` flag, as users can now specify `-c
disable_response_storage=true` to get the equivalent functionality.
Under the hood, this works by loading the `config.toml` into a
`toml::Value`. Then for each `key=value`, we create a small synthetic
TOML file with `value` so that we can run the TOML parser to get the
equivalent `toml::Value`. We then parse `key` to determine the point in
the original `toml::Value` to do the insert/replace. Once all of the
overrides from `-c` args have been applied, the `toml::Value` is
deserialized into a `ConfigToml` and then the `ConfigOverrides` are
applied, as before.
2025-05-27 23:11:44 -07:00
|
|
|
let top_cli = TopCli::parse();
|
|
|
|
|
// Merge root-level overrides into inner CLI struct so downstream logic remains unchanged.
|
|
|
|
|
let mut inner = top_cli.inner;
|
|
|
|
|
inner
|
|
|
|
|
.config_overrides
|
|
|
|
|
.raw_overrides
|
|
|
|
|
.splice(0..0, top_cli.config_overrides.raw_overrides);
|
|
|
|
|
|
feat: Complete LLMX v0.1.0 - Rebrand from Codex with LiteLLM Integration
This release represents a comprehensive transformation of the codebase from Codex to LLMX,
enhanced with LiteLLM integration to support 100+ LLM providers through a unified API.
## Major Changes
### Phase 1: Repository & Infrastructure Setup
- Established new repository structure and branching strategy
- Created comprehensive project documentation (CLAUDE.md, LITELLM-SETUP.md)
- Set up development environment and tooling configuration
### Phase 2: Rust Workspace Transformation
- Renamed all Rust crates from `codex-*` to `llmx-*` (30+ crates)
- Updated package names, binary names, and workspace members
- Renamed core modules: codex.rs → llmx.rs, codex_delegate.rs → llmx_delegate.rs
- Updated all internal references, imports, and type names
- Renamed directories: codex-rs/ → llmx-rs/, codex-backend-openapi-models/ → llmx-backend-openapi-models/
- Fixed all Rust compilation errors after mass rename
### Phase 3: LiteLLM Integration
- Integrated LiteLLM for multi-provider LLM support (Anthropic, OpenAI, Azure, Google AI, AWS Bedrock, etc.)
- Implemented OpenAI-compatible Chat Completions API support
- Added model family detection and provider-specific handling
- Updated authentication to support LiteLLM API keys
- Renamed environment variables: OPENAI_BASE_URL → LLMX_BASE_URL
- Added LLMX_API_KEY for unified authentication
- Enhanced error handling for Chat Completions API responses
- Implemented fallback mechanisms between Responses API and Chat Completions API
### Phase 4: TypeScript/Node.js Components
- Renamed npm package: @codex/codex-cli → @valknar/llmx
- Updated TypeScript SDK to use new LLMX APIs and endpoints
- Fixed all TypeScript compilation and linting errors
- Updated SDK tests to support both API backends
- Enhanced mock server to handle multiple API formats
- Updated build scripts for cross-platform packaging
### Phase 5: Configuration & Documentation
- Updated all configuration files to use LLMX naming
- Rewrote README and documentation for LLMX branding
- Updated config paths: ~/.codex/ → ~/.llmx/
- Added comprehensive LiteLLM setup guide
- Updated all user-facing strings and help text
- Created release plan and migration documentation
### Phase 6: Testing & Validation
- Fixed all Rust tests for new naming scheme
- Updated snapshot tests in TUI (36 frame files)
- Fixed authentication storage tests
- Updated Chat Completions payload and SSE tests
- Fixed SDK tests for new API endpoints
- Ensured compatibility with Claude Sonnet 4.5 model
- Fixed test environment variables (LLMX_API_KEY, LLMX_BASE_URL)
### Phase 7: Build & Release Pipeline
- Updated GitHub Actions workflows for LLMX binary names
- Fixed rust-release.yml to reference llmx-rs/ instead of codex-rs/
- Updated CI/CD pipelines for new package names
- Made Apple code signing optional in release workflow
- Enhanced npm packaging resilience for partial platform builds
- Added Windows sandbox support to workspace
- Updated dotslash configuration for new binary names
### Phase 8: Final Polish
- Renamed all assets (.github images, labels, templates)
- Updated VSCode and DevContainer configurations
- Fixed all clippy warnings and formatting issues
- Applied cargo fmt and prettier formatting across codebase
- Updated issue templates and pull request templates
- Fixed all remaining UI text references
## Technical Details
**Breaking Changes:**
- Binary name changed from `codex` to `llmx`
- Config directory changed from `~/.codex/` to `~/.llmx/`
- Environment variables renamed (CODEX_* → LLMX_*)
- npm package renamed to `@valknar/llmx`
**New Features:**
- Support for 100+ LLM providers via LiteLLM
- Unified authentication with LLMX_API_KEY
- Enhanced model provider detection and handling
- Improved error handling and fallback mechanisms
**Files Changed:**
- 578 files modified across Rust, TypeScript, and documentation
- 30+ Rust crates renamed and updated
- Complete rebrand of UI, CLI, and documentation
- All tests updated and passing
**Dependencies:**
- Updated Cargo.lock with new package names
- Updated npm dependencies in llmx-cli
- Enhanced OpenAPI models for LLMX backend
This release establishes LLMX as a standalone project with comprehensive LiteLLM
integration, maintaining full backward compatibility with existing functionality
while opening support for a wide ecosystem of LLM providers.
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>
Co-Authored-By: Sebastian Krüger <support@pivoine.art>
2025-11-12 20:40:44 +01:00
|
|
|
run_main(inner, llmx_linux_sandbox_exe).await?;
|
fix: overhaul how we spawn commands under seccomp/landlock on Linux (#1086)
Historically, we spawned the Seatbelt and Landlock sandboxes in
substantially different ways:
For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy
specified as an arg followed by the original command:
https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec.rs#L147-L219
For **Landlock/Seccomp**, we would do
`tokio::runtime::Builder::new_current_thread()`, _invoke
Landlock/Seccomp APIs to modify the permissions of that new thread_, and
then spawn the command:
https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/core/src/exec_linux.rs#L28-L49
While it is neat that Landlock/Seccomp supports applying a policy to
only one thread without having to apply it to the entire process, it
requires us to maintain two different codepaths and is a bit harder to
reason about. The tipping point was
https://github.com/openai/codex/pull/1061, in which we had to start
building up the `env` in an unexpected way for the existing
Landlock/Seccomp approach to continue to work.
This PR overhauls things so that we do similar things for Mac and Linux.
It turned out that we were already building our own "helper binary"
comparable to Mac's `sandbox-exec` as part of the `cli` crate:
https://github.com/openai/codex/blob/d1de7bb383552e8fadd94be79d65d188e00fd562/codex-rs/cli/Cargo.toml#L10-L12
We originally created this to build a small binary to include with the
Node.js version of the Codex CLI to provide support for Linux
sandboxing.
Though the sticky bit is that, at this point, we still want to deploy
the Rust version of Codex as a single, standalone binary rather than a
CLI and a supporting sandboxing binary. To satisfy this goal, we use
"the arg0 trick," in which we:
* use `std::env::current_exe()` to get the path to the CLI that is
currently running
* use the CLI as the `program` for the `Command`
* set `"codex-linux-sandbox"` as arg0 for the `Command`
A CLI that supports sandboxing should check arg0 at the start of the
program. If it is `"codex-linux-sandbox"`, it must invoke
`codex_linux_sandbox::run_main()`, which runs the CLI as if it were
`codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the
appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn
the original command, so do _replace_ the process rather than spawn a
subprocess. Incidentally, we do this before starting the Tokio runtime,
so the process should only have one thread when `execvp(3)` is called.
Because the `core` crate that needs to spawn the Linux sandboxing is not
a CLI in its own right, this means that every CLI that includes `core`
and relies on this behavior has to (1) implement it and (2) provide the
path to the sandboxing executable. While the path is almost always
`std::env::current_exe()`, we needed to make this configurable for
integration tests, so `Config` now has a `codex_linux_sandbox_exe:
Option<PathBuf>` property to facilitate threading this through,
introduced in https://github.com/openai/codex/pull/1089.
This common pattern is now captured in
`codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs`
functions that should use it have been updated as part of this PR.
The `codex-linux-sandbox` crate added to the Cargo workspace as part of
this PR now has the bulk of the Landlock/Seccomp logic, which makes
`core` a bit simpler. Indeed, `core/src/exec_linux.rs` and
`core/src/landlock.rs` were removed/ported as part of this PR. I also
moved the unit tests for this code into an integration test,
`linux-sandbox/tests/landlock.rs`, in which I use
`env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for
`codex_linux_sandbox_exe` since `std::env::current_exe()` is not
appropriate in that case.
2025-05-23 11:37:07 -07:00
|
|
|
Ok(())
|
|
|
|
|
})
|
feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00
|
|
|
}
|