Files
docker-compose/ai/README_GPU_SETUP.md
Sebastian Krüger 8de88d96ac docs(ai): add comprehensive GPU setup documentation and configs
- Add setup guides (SETUP_GUIDE, TAILSCALE_SETUP, DOCKER_GPU_SETUP, etc.)
- Add deployment configurations (litellm-config-gpu.yaml, gpu-server-compose.yaml)
- Add GPU_DEPLOYMENT_LOG.md with current infrastructure details
- Add GPU_EXPANSION_PLAN.md with complete provider comparison
- Add deploy-gpu-stack.sh automation script

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-21 12:57:06 +01:00

445 lines
11 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# GPU-Enhanced AI Stack - Implementation Guide
Welcome to your GPU expansion setup! This directory contains everything you need to deploy a production-ready GPU server for LLM hosting, image generation, and model training.
## 📚 Documentation Files
### Planning & Architecture
- **`GPU_EXPANSION_PLAN.md`** - Complete 70-page plan with provider comparison, architecture, and roadmap
- **`README_GPU_SETUP.md`** - This file
### Step-by-Step Setup Guides
1. **`SETUP_GUIDE.md`** - Day 1-2: RunPod account & GPU server deployment
2. **`WIREGUARD_SETUP.md`** - Day 3-4: VPN connection between VPS and GPU server
3. **`DOCKER_GPU_SETUP.md`** - Day 5: Docker + NVIDIA Container Toolkit configuration
### Configuration Files
- **`gpu-server-compose.yaml`** - Production Docker Compose for GPU server
- **`litellm-config-gpu.yaml`** - Updated LiteLLM config with self-hosted models
- **`deploy-gpu-stack.sh`** - Automated deployment script
---
## 🚀 Quick Start (Week 1 Checklist)
### Day 1-2: RunPod & GPU Server ✓
- [ ] Create RunPod account at https://www.runpod.io/
- [ ] Add billing method ($50 initial credit recommended)
- [ ] Deploy RTX 4090 pod with PyTorch template
- [ ] Configure 500GB network volume
- [ ] Verify SSH access
- [ ] Test GPU with `nvidia-smi`
- [ ] **Guide:** `SETUP_GUIDE.md`
### Day 3-4: Network Configuration ✓
- [ ] Install Tailscale on VPS
- [ ] Install Tailscale on GPU server
- [ ] Authenticate both devices
- [ ] Test VPN connectivity
- [ ] Configure firewall rules
- [ ] Verify VPS can reach GPU server
- [ ] **Guide:** `TAILSCALE_SETUP.md`
### Day 5: Docker & GPU Setup ✓
- [ ] Install Docker on GPU server
- [ ] Install NVIDIA Container Toolkit
- [ ] Test GPU access in containers
- [ ] Create /workspace/gpu-stack directory
- [ ] Copy configuration files
- [ ] **Guide:** `DOCKER_GPU_SETUP.md`
### Day 6-7: Deploy Services ✓
- [ ] Copy `gpu-server-compose.yaml` to GPU server
- [ ] Edit `.env` with your settings
- [ ] Run `./deploy-gpu-stack.sh`
- [ ] Wait for vLLM to load model (~5 minutes)
- [ ] Test vLLM: `curl http://localhost:8000/v1/models`
- [ ] Access ComfyUI: `http://[tailscale-ip]:8188`
- [ ] **Script:** `deploy-gpu-stack.sh`
---
## 📦 Services Included
### vLLM (http://[tailscale-ip]:8000)
**Purpose:** High-performance LLM inference
**Default Model:** Llama 3.1 8B Instruct
**Performance:** 50-80 tokens/second on RTX 4090
**Use for:** General chat, Q&A, code generation, summarization
**Switch models:**
Edit `gpu-server-compose.yaml`, change `--model` parameter, restart:
```bash
docker compose restart vllm
```
### ComfyUI (http://[tailscale-ip]:8188)
**Purpose:** Advanced Stable Diffusion interface
**Features:** FLUX, SDXL, ControlNet, LoRA
**Use for:** Image generation, img2img, inpainting
**Download models:**
Access web UI → ComfyUI Manager → Install Models
### JupyterLab (http://[tailscale-ip]:8888)
**Purpose:** Interactive development environment
**Token:** `pivoine-ai-2025` (change in `.env`)
**Use for:** Research, experimentation, custom training scripts
### Axolotl (Training - on-demand)
**Purpose:** LLM fine-tuning framework
**Start:** `docker compose --profile training up -d axolotl`
**Use for:** LoRA training, full fine-tuning, RLHF
### Netdata (http://[tailscale-ip]:19999)
**Purpose:** System & GPU monitoring
**Features:** Real-time metrics, GPU utilization, memory usage
**Use for:** Performance monitoring, troubleshooting
---
## 🔧 Configuration
### Environment Variables (.env)
```bash
# VPN Network (Tailscale)
VPS_IP=100.x.x.x # Your VPS Tailscale IP (get with: tailscale ip -4)
GPU_IP=100.x.x.x # GPU server Tailscale IP (get with: tailscale ip -4)
# Model Storage
MODELS_PATH=/workspace/models
# Hugging Face Token (for gated models like Llama)
HF_TOKEN=hf_xxxxxxxxxxxxx
# Weights & Biases (for training logging)
WANDB_API_KEY=
# JupyterLab Access
JUPYTER_TOKEN=pivoine-ai-2025
# PostgreSQL (on VPS)
DB_HOST=100.x.x.x # Your VPS Tailscale IP
DB_PORT=5432
DB_USER=valknar
DB_PASSWORD=ragnarok98
DB_NAME=openwebui
```
### Updating LiteLLM on VPS
After GPU server is running, update your VPS LiteLLM config:
```bash
# On VPS
cd ~/Projects/docker-compose/ai
# Backup current config
cp litellm-config.yaml litellm-config.yaml.backup
# Copy new config with GPU models
cp litellm-config-gpu.yaml litellm-config.yaml
# Restart LiteLLM
arty restart litellm
```
Now Open WebUI will have access to both Claude (API) and Llama (self-hosted)!
---
## 💰 Cost Management
### Current Costs (24/7 Operation)
- **GPU Server:** RTX 4090 @ $0.50/hour = $360/month
- **Storage:** 500GB network volume = $50/month
- **Total:** **$410/month**
### Cost-Saving Options
**1. Pay-as-you-go (8 hours/day)**
- GPU: $0.50 × 8 × 30 = $120/month
- Storage: $50/month
- **Total: $170/month**
**2. Auto-stop idle pods**
RunPod can auto-stop after X minutes idle:
- Dashboard → Pod Settings → Auto-stop after 30 minutes
**3. Use smaller models**
- Mistral 7B instead of Llama 8B: Faster, cheaper GPU
- Quantized models: 4-bit = 1/4 the VRAM
**4. Batch image generation**
- Generate multiple images at once
- Use scheduled jobs (cron) during off-peak hours
### Cost Tracking
**Check GPU usage:**
```bash
# On RunPod dashboard
Billing → Usage History
# See hourly costs, total spent
```
**Check API vs GPU savings:**
```bash
# On VPS, check LiteLLM logs
docker logs ai_litellm | grep "model="
# Count requests to llama-3.1-8b vs claude-*
```
**Expected savings:**
- 80% of requests → self-hosted = $0 cost
- 20% of requests → Claude = API cost
- Break-even if currently spending >$500/month on APIs
---
## 🔍 Monitoring & Troubleshooting
### Check Service Status
```bash
# On GPU server
cd /workspace/gpu-stack
# View all services
docker compose ps
# Check specific service logs
docker compose logs -f vllm
docker compose logs -f comfyui
docker compose logs -f jupyter
# Check GPU usage
nvidia-smi
# or prettier:
nvtop
```
### Common Issues
**vLLM not loading model:**
```bash
# Check logs
docker compose logs vllm
# Common causes:
# - Model download in progress (wait 5-10 minutes)
# - Out of VRAM (try smaller model)
# - Missing HF_TOKEN (for gated models like Llama)
```
**ComfyUI slow/crashing:**
```bash
# Check GPU memory
nvidia-smi
# If VRAM full:
# - Close vLLM temporarily
# - Use smaller models
# - Reduce batch size in ComfyUI
```
**Can't access from VPS:**
```bash
# Test VPN
ping [tailscale-ip]
# If fails:
# - Check Tailscale status: tailscale status
# - Restart Tailscale: tailscale down && tailscale up
# - Check firewall: ufw status
```
**Docker can't see GPU:**
```bash
# Test GPU access
docker run --rm --runtime=nvidia --gpus all nvidia/cuda:12.1.0-base nvidia-smi
# If fails:
# - Check NVIDIA driver: nvidia-smi
# - Check nvidia-docker: nvidia-ctk --version
# - Restart Docker: systemctl restart docker
```
---
## 📊 Performance Benchmarks
### Expected Performance (RTX 4090)
**LLM Inference (vLLM):**
- Llama 3.1 8B: 50-80 tokens/second
- Qwen 2.5 14B: 30-50 tokens/second
- Batch size 32: ~1500 tokens/second
**Image Generation (ComfyUI):**
- SDXL (1024×1024): ~4-6 seconds
- FLUX (1024×1024): ~8-12 seconds
- SD 1.5 (512×512): ~1-2 seconds
**Training (Axolotl):**
- LoRA fine-tuning (8B model): ~3-5 hours for 3 epochs
- Full fine-tuning: Not recommended on 24GB VRAM
---
## 🔐 Security Best Practices
### Network Security
✅ All services behind Tailscale VPN (end-to-end encrypted)
✅ No public exposure (except RunPod's SSH)
✅ Firewall configured (no additional ports needed)
### Access Control
✅ JupyterLab password-protected
✅ ComfyUI accessible via VPN only
✅ vLLM internal API (no auth needed)
### SSH Security
```bash
# On GPU server, harden SSH
nano /etc/ssh/sshd_config
# Set:
PermitRootLogin prohibit-password
PasswordAuthentication no
PubkeyAuthentication yes
systemctl restart sshd
```
### Regular Updates
```bash
# Weekly updates
apt update && apt upgrade -y
# Update Docker images
docker compose pull
docker compose up -d
```
---
## 📈 Scaling Up
### When to Add More GPUs
**Current limitations (1× RTX 4090):**
- Can run ONE of these at a time:
- 8B LLM at full speed
- 14B LLM at moderate speed
- SDXL image generation
- Training job
**Add 2nd GPU if:**
- You want LLM + image gen simultaneously
- Training + inference at same time
- Multiple users with high demand
**Multi-GPU options:**
- 2× RTX 4090: Run vLLM + ComfyUI separately ($720/month)
- 1× A100 40GB: Larger models (70B with quantization) ($1,080/month)
- Mix: RTX 4090 (inference) + A100 (training) (~$1,300/month)
### Deploying Larger Models
**70B models (need 2× A100 or 4× RTX 4090):**
```yaml
# In gpu-server-compose.yaml
vllm:
command:
- --model
- meta-llama/Meta-Llama-3.1-70B-Instruct
- --tensor-parallel-size
- "2" # Split across 2 GPUs
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 2 # Use 2 GPUs
capabilities: [gpu]
```
---
## 🎯 Next Steps (Week 2+)
### Week 2: LLM Production Deployment
- [ ] Test Llama 3.1 8B performance
- [ ] Download additional models (Qwen, Mistral)
- [ ] Configure model routing in LiteLLM
- [ ] Set up usage monitoring
- [ ] Benchmark tokens/second for each model
### Week 3: Image Generation
- [ ] Download FLUX and SDXL models
- [ ] Install ComfyUI Manager
- [ ] Download ControlNet models
- [ ] Create sample workflows
- [ ] Test API integration with Open WebUI
### Week 4: Training Infrastructure
- [ ] Prepare a sample dataset
- [ ] Test LoRA fine-tuning with Axolotl
- [ ] Set up Weights & Biases logging
- [ ] Create training documentation
- [ ] Benchmark training speed
---
## 🆘 Getting Help
### Resources
- **RunPod Docs:** https://docs.runpod.io/
- **vLLM Docs:** https://docs.vllm.ai/
- **ComfyUI Wiki:** https://github.com/comfyanonymous/ComfyUI/wiki
- **Axolotl Docs:** https://github.com/OpenAccess-AI-Collective/axolotl
### Community
- **RunPod Discord:** https://discord.gg/runpod
- **vLLM Discord:** https://discord.gg/vllm
- **r/LocalLLaMA:** https://reddit.com/r/LocalLLaMA
### Support
If you encounter issues:
1. Check logs: `docker compose logs -f [service]`
2. Check GPU: `nvidia-smi`
3. Check VPN: `wg show`
4. Restart service: `docker compose restart [service]`
5. Full restart: `docker compose down && docker compose up -d`
---
## ✅ Success Criteria
You're ready to proceed when:
- [ ] GPU server responds to `ping [tailscale-ip]` from VPS
- [ ] vLLM returns models: `curl http://[tailscale-ip]:8000/v1/models`
- [ ] ComfyUI web interface loads: `http://[tailscale-ip]:8188`
- [ ] JupyterLab accessible with token
- [ ] Netdata shows GPU metrics
- [ ] Open WebUI shows both Claude and Llama models
**Total setup time:** 4-6 hours (if following guides sequentially)
---
## 🎉 You're All Set!
Your GPU-enhanced AI stack is ready. You now have:
- ✅ Self-hosted LLM inference (saves $$$)
- ✅ Advanced image generation (FLUX, SDXL)
- ✅ Model training capabilities (LoRA, fine-tuning)
- ✅ Secure VPN connection
- ✅ Full monitoring and logging
Enjoy building with your new AI infrastructure! 🚀