docs: migrate multi-modal AI orchestration to dedicated runpod repository
Multi-modal AI stack (text/image/music generation) has been moved to: Repository: ssh://git@dev.pivoine.art:2222/valknar/runpod.git Updated ai/README.md to document: - VPS AI services (Open WebUI, Crawl4AI, AI PostgreSQL) - Reference to new runpod repository for GPU infrastructure - Clear separation between VPS and GPU deployments - Integration architecture via Tailscale VPN
This commit is contained in:
565
ai/README.md
565
ai/README.md
@@ -1,467 +1,170 @@
|
||||
# Multi-Modal AI Orchestration System
|
||||
# AI Infrastructure
|
||||
|
||||
**Cost-optimized AI infrastructure running text, image, and music generation on a single RunPod RTX 4090 GPU.**
|
||||
This directory contains AI-related configurations for the VPS deployment.
|
||||
|
||||
## Architecture Overview
|
||||
## Multi-Modal GPU Infrastructure (Migrated)
|
||||
|
||||
This system provides a unified API for multiple AI model types with automatic model switching on a single GPU (24GB VRAM). All requests route through an intelligent orchestrator that manages model lifecycle.
|
||||
**The multi-modal AI orchestration stack (text, image, music generation) has been moved to a dedicated repository:**
|
||||
|
||||
### Components
|
||||
**Repository**: https://dev.pivoine.art/valknar/runpod
|
||||
|
||||
```
|
||||
┌─────────────────────────────────────────────────────────────────┐
|
||||
│ VPS (Tailscale: 100.102.217.79) │
|
||||
│ ┌───────────────────────────────────────────────────────────┐ │
|
||||
│ │ LiteLLM Proxy (Port 4000) │ │
|
||||
│ │ Routes to: Claude API + GPU Orchestrator │ │
|
||||
│ └────────────────────┬──────────────────────────────────────┘ │
|
||||
└───────────────────────┼─────────────────────────────────────────┘
|
||||
│ Tailscale VPN
|
||||
┌───────────────────────┼─────────────────────────────────────────┐
|
||||
│ RunPod GPU Server (Tailscale: 100.100.108.13) │
|
||||
│ ┌────────────────────▼──────────────────────────────────────┐ │
|
||||
│ │ Orchestrator (Port 9000) │ │
|
||||
│ │ Manages sequential model loading based on request type │ │
|
||||
│ └─────┬──────────────┬──────────────────┬──────────────────┘ │
|
||||
│ │ │ │ │
|
||||
│ ┌─────▼──────┐ ┌────▼────────┐ ┌──────▼───────┐ │
|
||||
│ │vLLM │ │Flux.1 │ │MusicGen │ │
|
||||
│ │Qwen 2.5 7B │ │Schnell │ │Medium │ │
|
||||
│ │Port: 8001 │ │Port: 8002 │ │Port: 8003 │ │
|
||||
│ │VRAM: 14GB │ │VRAM: 14GB │ │VRAM: 11GB │ │
|
||||
│ └────────────┘ └─────────────┘ └──────────────┘ │
|
||||
│ │
|
||||
│ Only ONE model active at a time (sequential loading) │
|
||||
└─────────────────────────────────────────────────────────────────┘
|
||||
```
|
||||
The RunPod repository contains:
|
||||
- Model orchestrator for automatic switching between text, image, and music models
|
||||
- vLLM + Qwen 2.5 7B (text generation)
|
||||
- Flux.1 Schnell (image generation)
|
||||
- MusicGen Medium (music generation)
|
||||
- RunPod template creation scripts
|
||||
- Complete deployment documentation
|
||||
|
||||
### Features
|
||||
This separation allows for independent management of:
|
||||
- **VPS Services** (this repo): Open WebUI, Crawl4AI, AI database
|
||||
- **GPU Services** (runpod repo): Model inference, orchestration, RunPod templates
|
||||
|
||||
✅ **Automatic Model Switching** - Orchestrator detects request type and loads appropriate model
|
||||
✅ **OpenAI-Compatible APIs** - Works with existing OpenAI clients and tools
|
||||
✅ **Cost-Optimized** - Sequential loading on single GPU (~$0.50/hr vs ~$0.75/hr for multi-GPU)
|
||||
✅ **Easy Model Addition** - Add new models by editing YAML config
|
||||
✅ **Centralized Routing** - LiteLLM proxy provides unified API for all models
|
||||
✅ **GPU Memory Safe** - Orchestrator ensures only one model loaded at a time
|
||||
## VPS AI Services (ai/compose.yaml)
|
||||
|
||||
## Supported Model Types
|
||||
This compose stack manages the VPS-side AI infrastructure that integrates with the GPU server:
|
||||
|
||||
### Text Generation
|
||||
- **Qwen 2.5 7B Instruct** (facebook/Qwen2.5-7B-Instruct)
|
||||
- VRAM: 14GB | Speed: Fast | OpenAI-compatible chat API
|
||||
### Services
|
||||
|
||||
### Image Generation
|
||||
- **Flux.1 Schnell** (black-forest-labs/FLUX.1-schnell)
|
||||
- VRAM: 14GB | Speed: 4-5 sec/image | OpenAI DALL-E compatible API
|
||||
#### ai_postgres
|
||||
Dedicated PostgreSQL 16 instance with pgvector extension for AI workloads:
|
||||
- Vector similarity search support
|
||||
- Isolated from core database for performance
|
||||
- Used by Open WebUI for RAG and embeddings
|
||||
|
||||
### Music Generation
|
||||
- **MusicGen Medium** (facebook/musicgen-medium)
|
||||
- VRAM: 11GB | Speed: 60-90 sec for 30s audio | Custom audio API
|
||||
#### webui (Open WebUI)
|
||||
ChatGPT-like interface exposed at `ai.pivoine.art:8080`:
|
||||
- Claude API integration via Anthropic
|
||||
- RAG support with document upload
|
||||
- Vector storage via pgvector
|
||||
- Web search capability
|
||||
- SMTP email via IONOS
|
||||
- User signup enabled
|
||||
|
||||
## Quick Start
|
||||
#### crawl4ai
|
||||
Internal web scraping service for LLM content preparation:
|
||||
- API on port 11235 (not exposed publicly)
|
||||
- Optimized for AI/RAG workflows
|
||||
- Integration with Open WebUI and n8n
|
||||
|
||||
### 1. Prerequisites
|
||||
## Integration with GPU Server
|
||||
|
||||
The VPS AI services connect to the GPU server via Tailscale VPN:
|
||||
- **VPS Tailscale IP**: 100.102.217.79
|
||||
- **GPU Tailscale IP**: 100.100.108.13
|
||||
|
||||
**LiteLLM Proxy** (port 4000 on VPS) routes requests:
|
||||
- Claude API for chat completions
|
||||
- GPU orchestrator for self-hosted models (text, image, music)
|
||||
|
||||
See `../litellm-config.yaml` for routing configuration.
|
||||
|
||||
## Environment Variables
|
||||
|
||||
Required in `.env`:
|
||||
```bash
|
||||
# On RunPod GPU server
|
||||
- RunPod RTX 4090 instance (24GB VRAM)
|
||||
- Docker & Docker Compose installed
|
||||
- Tailscale VPN configured
|
||||
- HuggingFace token (for model downloads)
|
||||
# AI Database
|
||||
AI_DB_PASSWORD=<password>
|
||||
|
||||
# Open WebUI
|
||||
AI_WEBUI_SECRET_KEY=<secret>
|
||||
|
||||
# Claude API
|
||||
ANTHROPIC_API_KEY=<api_key>
|
||||
|
||||
# Email (IONOS SMTP)
|
||||
ADMIN_EMAIL=<email>
|
||||
SMTP_HOST=smtp.ionos.com
|
||||
SMTP_PORT=587
|
||||
SMTP_USER=<smtp_user>
|
||||
SMTP_PASSWORD=<smtp_password>
|
||||
```
|
||||
|
||||
### 2. Clone & Configure
|
||||
## Backup Configuration
|
||||
|
||||
```bash
|
||||
# On local machine
|
||||
cd ai/
|
||||
AI services are backed up daily via Restic:
|
||||
- **ai_postgres_data**: 3 AM (7 daily, 4 weekly, 6 monthly, 2 yearly)
|
||||
- **ai_webui_data**: 3 AM (same retention)
|
||||
- **ai_crawl4ai_data**: 3 AM (same retention)
|
||||
|
||||
# Create environment file
|
||||
cp .env.example .env
|
||||
# Edit .env and add your HF_TOKEN
|
||||
```
|
||||
|
||||
### 3. Deploy to RunPod
|
||||
|
||||
```bash
|
||||
# Copy all files to RunPod GPU server
|
||||
scp -r ai/* gpu-pivoine:/workspace/ai/
|
||||
|
||||
# SSH to GPU server
|
||||
ssh gpu-pivoine
|
||||
|
||||
# Navigate to project
|
||||
cd /workspace/ai/
|
||||
|
||||
# Start orchestrator (always running)
|
||||
docker compose -f docker-compose.gpu.yaml up -d orchestrator
|
||||
|
||||
# Orchestrator will automatically manage model services as needed
|
||||
```
|
||||
|
||||
### 4. Test Deployment
|
||||
|
||||
```bash
|
||||
# Check orchestrator health
|
||||
curl http://100.100.108.13:9000/health
|
||||
|
||||
# Test text generation (auto-loads vLLM)
|
||||
curl http://100.100.108.13:9000/v1/chat/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "qwen-2.5-7b",
|
||||
"messages": [{"role": "user", "content": "Hello!"}]
|
||||
}'
|
||||
|
||||
# Test image generation (auto-switches to Flux)
|
||||
curl http://100.100.108.13:9000/v1/images/generations \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "flux-schnell",
|
||||
"prompt": "a cute cat",
|
||||
"size": "1024x1024"
|
||||
}'
|
||||
|
||||
# Test music generation (auto-switches to MusicGen)
|
||||
curl http://100.100.108.13:9000/v1/audio/generations \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "musicgen-medium",
|
||||
"prompt": "upbeat electronic dance music",
|
||||
"duration": 30
|
||||
}'
|
||||
```
|
||||
|
||||
### 5. Update VPS LiteLLM
|
||||
|
||||
```bash
|
||||
# On VPS, restart LiteLLM to pick up new config
|
||||
ssh vps
|
||||
cd ~/Projects/docker-compose
|
||||
arty restart litellm
|
||||
```
|
||||
|
||||
## Usage Examples
|
||||
|
||||
### Via Open WebUI (https://ai.pivoine.art)
|
||||
|
||||
**Text Generation:**
|
||||
1. Select model: `qwen-2.5-7b`
|
||||
2. Type message and send
|
||||
3. Orchestrator loads vLLM automatically
|
||||
|
||||
**Image Generation:**
|
||||
1. Select model: `flux-schnell`
|
||||
2. Enter image prompt
|
||||
3. Orchestrator switches to Flux.1
|
||||
|
||||
**Music Generation:**
|
||||
1. Select model: `musicgen-medium`
|
||||
2. Describe the music you want
|
||||
3. Orchestrator switches to MusicGen
|
||||
|
||||
### Via API (Direct)
|
||||
|
||||
```python
|
||||
import openai
|
||||
|
||||
# Configure client to use orchestrator
|
||||
client = openai.OpenAI(
|
||||
base_url="http://100.100.108.13:9000/v1",
|
||||
api_key="dummy" # Not used but required
|
||||
)
|
||||
|
||||
# Text generation
|
||||
response = client.chat.completions.create(
|
||||
model="qwen-2.5-7b",
|
||||
messages=[{"role": "user", "content": "Write a haiku"}]
|
||||
)
|
||||
|
||||
# Image generation
|
||||
image = client.images.generate(
|
||||
model="flux-schnell",
|
||||
prompt="a sunset over mountains",
|
||||
size="1024x1024"
|
||||
)
|
||||
|
||||
# Music generation (custom endpoint)
|
||||
import requests
|
||||
music = requests.post(
|
||||
"http://100.100.108.13:9000/v1/audio/generations",
|
||||
json={
|
||||
"model": "musicgen-medium",
|
||||
"prompt": "calm piano music",
|
||||
"duration": 30
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
## Adding New Models
|
||||
|
||||
### Step 1: Update `models.yaml`
|
||||
|
||||
```yaml
|
||||
# Add to ai/model-orchestrator/models.yaml
|
||||
models:
|
||||
llama-3.1-8b: # New model
|
||||
type: text
|
||||
framework: vllm
|
||||
docker_service: vllm-llama
|
||||
port: 8004
|
||||
vram_gb: 17
|
||||
startup_time_seconds: 120
|
||||
endpoint: /v1/chat/completions
|
||||
description: "Llama 3.1 8B Instruct - Meta's latest model"
|
||||
```
|
||||
|
||||
### Step 2: Add Docker Service
|
||||
|
||||
```yaml
|
||||
# Add to ai/docker-compose.gpu.yaml
|
||||
services:
|
||||
vllm-llama:
|
||||
build: ./vllm
|
||||
container_name: ai_vllm-llama_1
|
||||
command: >
|
||||
vllm serve meta-llama/Llama-3.1-8B-Instruct
|
||||
--port 8000 --dtype bfloat16
|
||||
ports:
|
||||
- "8004:8000"
|
||||
environment:
|
||||
- HF_TOKEN=${HF_TOKEN}
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
count: 1
|
||||
capabilities: [gpu]
|
||||
profiles: ["text"]
|
||||
restart: "no"
|
||||
```
|
||||
|
||||
### Step 3: Restart Orchestrator
|
||||
|
||||
```bash
|
||||
ssh gpu-pivoine
|
||||
cd /workspace/ai/
|
||||
docker compose -f docker-compose.gpu.yaml restart orchestrator
|
||||
```
|
||||
|
||||
**That's it!** The orchestrator automatically detects the new model.
|
||||
Repository: `/mnt/hidrive/users/valknar/Backup`
|
||||
|
||||
## Management Commands
|
||||
|
||||
### Orchestrator
|
||||
```bash
|
||||
# Start AI stack
|
||||
pnpm arty up ai_postgres webui crawl4ai
|
||||
|
||||
# View logs
|
||||
docker logs -f ai_webui
|
||||
docker logs -f ai_postgres
|
||||
docker logs -f ai_crawl4ai
|
||||
|
||||
# Check Open WebUI
|
||||
curl http://ai.pivoine.art:8080/health
|
||||
|
||||
# Restart AI services
|
||||
pnpm arty restart ai_postgres webui crawl4ai
|
||||
```
|
||||
|
||||
## GPU Server Management
|
||||
|
||||
For GPU server operations (model orchestration, template creation, etc.):
|
||||
|
||||
```bash
|
||||
# Start orchestrator
|
||||
docker compose -f docker-compose.gpu.yaml up -d orchestrator
|
||||
# Clone the dedicated repository
|
||||
git clone ssh://git@dev.pivoine.art:2222/valknar/runpod.git
|
||||
|
||||
# View orchestrator logs
|
||||
docker logs -f ai_orchestrator
|
||||
|
||||
# Restart orchestrator
|
||||
docker compose -f docker-compose.gpu.yaml restart orchestrator
|
||||
|
||||
# Check active model
|
||||
curl http://100.100.108.13:9000/health
|
||||
|
||||
# List all models
|
||||
curl http://100.100.108.13:9000/models
|
||||
# See runpod repository for:
|
||||
# - Model orchestration setup
|
||||
# - RunPod template creation
|
||||
# - GPU deployment guides
|
||||
```
|
||||
|
||||
### Manual Model Control
|
||||
## Documentation
|
||||
|
||||
```bash
|
||||
# Manually switch to specific model
|
||||
curl -X POST http://100.100.108.13:9000/switch \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{"model": "flux-schnell"}'
|
||||
### VPS AI Services
|
||||
- [GPU_DEPLOYMENT_LOG.md](GPU_DEPLOYMENT_LOG.md) - VPS AI deployment history
|
||||
|
||||
# Check which model is running
|
||||
curl http://100.100.108.13:9000/health | jq '.current_model'
|
||||
```
|
||||
### GPU Server (Separate Repository)
|
||||
- [runpod/README.md](https://dev.pivoine.art/valknar/runpod) - Main GPU documentation
|
||||
- [runpod/DEPLOYMENT.md](https://dev.pivoine.art/valknar/runpod) - Deployment guide
|
||||
- [runpod/RUNPOD_TEMPLATE.md](https://dev.pivoine.art/valknar/runpod) - Template creation
|
||||
|
||||
### Model Services
|
||||
|
||||
```bash
|
||||
# Manually start a specific model (bypassing orchestrator)
|
||||
docker compose -f docker-compose.gpu.yaml --profile text up -d vllm-qwen
|
||||
|
||||
# Stop a model
|
||||
docker compose -f docker-compose.gpu.yaml stop vllm-qwen
|
||||
|
||||
# View model logs
|
||||
docker logs -f ai_vllm-qwen_1
|
||||
docker logs -f ai_flux_1
|
||||
docker logs -f ai_musicgen_1
|
||||
```
|
||||
|
||||
## Monitoring
|
||||
|
||||
### GPU Usage
|
||||
|
||||
```bash
|
||||
ssh gpu-pivoine "nvidia-smi"
|
||||
```
|
||||
|
||||
### Model Status
|
||||
|
||||
```bash
|
||||
# Which model is active?
|
||||
curl http://100.100.108.13:9000/health
|
||||
|
||||
# Model memory usage
|
||||
curl http://100.100.108.13:9000/health | jq '{current: .current_model, vram: .model_info.vram_gb}'
|
||||
```
|
||||
|
||||
### Performance
|
||||
|
||||
```bash
|
||||
# Orchestrator logs (model switching)
|
||||
docker logs -f ai_orchestrator
|
||||
|
||||
# Model-specific logs
|
||||
docker logs -f ai_vllm-qwen_1
|
||||
docker logs -f ai_flux_1
|
||||
docker logs -f ai_musicgen_1
|
||||
```
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Model Won't Load
|
||||
|
||||
```bash
|
||||
# Check orchestrator logs
|
||||
docker logs ai_orchestrator
|
||||
|
||||
# Check if model service exists
|
||||
docker compose -f docker-compose.gpu.yaml config | grep -A 10 "vllm-qwen"
|
||||
|
||||
# Manually test model service
|
||||
docker compose -f docker-compose.gpu.yaml --profile text up -d vllm-qwen
|
||||
curl http://localhost:8001/health
|
||||
```
|
||||
|
||||
### Orchestrator Can't Connect
|
||||
|
||||
```bash
|
||||
# Check Docker socket permissions
|
||||
ls -l /var/run/docker.sock
|
||||
|
||||
# Restart Docker daemon
|
||||
sudo systemctl restart docker
|
||||
|
||||
# Rebuild orchestrator
|
||||
docker compose -f docker-compose.gpu.yaml build orchestrator
|
||||
docker compose -f docker-compose.gpu.yaml up -d orchestrator
|
||||
```
|
||||
|
||||
### Model Switching Too Slow
|
||||
|
||||
```bash
|
||||
# Check model startup times in models.yaml
|
||||
# Adjust startup_time_seconds if needed
|
||||
|
||||
# Pre-download models to /workspace cache
|
||||
docker run --rm -it --gpus all \
|
||||
-v /workspace/huggingface_cache:/cache \
|
||||
-e HF_HOME=/cache \
|
||||
nvidia/cuda:12.4.0-runtime-ubuntu22.04 \
|
||||
huggingface-cli download facebook/musicgen-medium
|
||||
```
|
||||
|
||||
## File Structure
|
||||
## Architecture Overview
|
||||
|
||||
```
|
||||
ai/
|
||||
├── docker-compose.gpu.yaml # Main orchestration file
|
||||
├── .env.example # Environment template
|
||||
├── README.md # This file
|
||||
│
|
||||
├── model-orchestrator/ # Central orchestrator service
|
||||
│ ├── orchestrator.py # FastAPI app managing models
|
||||
│ ├── models.yaml # Model registry (EDIT TO ADD MODELS)
|
||||
│ ├── Dockerfile
|
||||
│ └── requirements.txt
|
||||
│
|
||||
├── vllm/ # Text generation (vLLM)
|
||||
│ ├── server.py # Qwen 2.5 7B server
|
||||
│ ├── Dockerfile
|
||||
│ └── requirements.txt
|
||||
│
|
||||
├── flux/ # Image generation (Flux.1 Schnell)
|
||||
│ └── config/
|
||||
│ └── config.json # Flux configuration
|
||||
│
|
||||
├── musicgen/ # Music generation (MusicGen)
|
||||
│ ├── server.py # MusicGen API server
|
||||
│ ├── Dockerfile
|
||||
│ └── requirements.txt
|
||||
│
|
||||
├── litellm-config.yaml # LiteLLM proxy configuration
|
||||
└── GPU_DEPLOYMENT_LOG.md # Deployment history and notes
|
||||
┌─────────────────────────────────────────────────────────────────┐
|
||||
│ VPS (Tailscale: 100.102.217.79) │
|
||||
│ ┌───────────────────────────────────────────────────────────┐ │
|
||||
│ │ LiteLLM Proxy (Port 4000) │ │
|
||||
│ │ Routes to: Claude API + GPU Orchestrator │ │
|
||||
│ └───────┬───────────────────────────────────────────────────┘ │
|
||||
│ │ │
|
||||
│ ┌───────▼─────────┐ ┌──────────────┐ ┌─────────────────┐ │
|
||||
│ │ Open WebUI │ │ Crawl4AI │ │ AI PostgreSQL │ │
|
||||
│ │ Port: 8080 │ │ Port: 11235 │ │ + pgvector │ │
|
||||
│ └─────────────────┘ └──────────────┘ └─────────────────┘ │
|
||||
└─────────────────────────────────────────────────────────────────┘
|
||||
│ Tailscale VPN
|
||||
┌──────────────────────────────┼──────────────────────────────────┐
|
||||
│ RunPod GPU Server (Tailscale: 100.100.108.13) │
|
||||
│ ┌───────────────────────────▼──────────────────────────────┐ │
|
||||
│ │ Orchestrator (Port 9000) │ │
|
||||
│ │ Manages sequential model loading │ │
|
||||
│ └─────┬──────────────┬──────────────────┬──────────────────┘ │
|
||||
│ │ │ │ │
|
||||
│ ┌─────▼──────┐ ┌────▼────────┐ ┌──────▼───────┐ │
|
||||
│ │vLLM │ │Flux.1 │ │MusicGen │ │
|
||||
│ │Qwen 2.5 7B │ │Schnell │ │Medium │ │
|
||||
│ │Port: 8001 │ │Port: 8002 │ │Port: 8003 │ │
|
||||
│ └────────────┘ └─────────────┘ └──────────────┘ │
|
||||
└─────────────────────────────────────────────────────────────────┘
|
||||
```
|
||||
|
||||
## Cost Analysis
|
||||
|
||||
### Current Setup (Single GPU)
|
||||
- **Provider**: RunPod Spot Instance
|
||||
- **GPU**: RTX 4090 24GB
|
||||
- **Cost**: ~$0.50/hour
|
||||
- **Monthly**: ~$360 (if running 24/7)
|
||||
- **Optimized**: ~$120 (8 hours/day during business hours)
|
||||
|
||||
### Alternative: Multi-GPU (All Models Always On)
|
||||
- **GPUs**: 2× RTX 4090
|
||||
- **Cost**: ~$0.75/hour
|
||||
- **Monthly**: ~$540 (if running 24/7)
|
||||
- **Trade-off**: No switching latency, +$180/month
|
||||
|
||||
### Recommendation
|
||||
Stick with single GPU sequential loading for cost optimization. Model switching (30-120 seconds) is acceptable for most use cases.
|
||||
|
||||
## Performance Expectations
|
||||
|
||||
| Model | VRAM | Startup Time | Generation Speed |
|
||||
|-------|------|--------------|------------------|
|
||||
| Qwen 2.5 7B | 14GB | 120s | ~50 tokens/sec |
|
||||
| Flux.1 Schnell | 14GB | 60s | ~4-5 sec/image |
|
||||
| MusicGen Medium | 11GB | 45s | ~60-90 sec for 30s audio |
|
||||
|
||||
**Model Switching**: 30-120 seconds (unload current + load new)
|
||||
|
||||
## Security Notes
|
||||
|
||||
- Orchestrator requires Docker socket access (`/var/run/docker.sock`)
|
||||
- All services run on private Tailscale network
|
||||
- No public exposure (only via VPS LiteLLM proxy)
|
||||
- HuggingFace token stored in `.env` (not committed to git)
|
||||
|
||||
## Future Enhancements
|
||||
|
||||
1. ⏹️ Add Llama 3.1 8B for alternative text generation
|
||||
2. ⏹️ Add Whisper Large v3 for speech-to-text
|
||||
3. ⏹️ Add XTTS v2 for text-to-speech
|
||||
4. ⏹️ Implement model preloading/caching for faster switching
|
||||
5. ⏹️ Add usage metrics and cost tracking
|
||||
6. ⏹️ Auto-stop GPU pod during idle periods
|
||||
|
||||
## Support
|
||||
|
||||
For issues or questions:
|
||||
- Check orchestrator logs: `docker logs ai_orchestrator`
|
||||
- View model-specific logs: `docker logs ai_<service>_1`
|
||||
- Test direct model access: `curl http://localhost:<port>/health`
|
||||
- Review GPU deployment log: `GPU_DEPLOYMENT_LOG.md`
|
||||
|
||||
## License
|
||||
|
||||
Built with:
|
||||
- [vLLM](https://github.com/vllm-project/vllm) - Apache 2.0
|
||||
- [AudioCraft](https://github.com/facebookresearch/audiocraft) - MIT (code), CC-BY-NC (weights)
|
||||
- [Flux.1](https://github.com/black-forest-labs/flux) - Apache 2.0
|
||||
- [LiteLLM](https://github.com/BerriAI/litellm) - MIT
|
||||
|
||||
**Note**: MusicGen pre-trained weights are non-commercial (CC-BY-NC). Train your own models for commercial use with the MIT-licensed code.
|
||||
For issues:
|
||||
- **VPS AI services**: Check logs via `docker logs`
|
||||
- **GPU server**: See runpod repository documentation
|
||||
- **LiteLLM routing**: Review `../litellm-config.yaml`
|
||||
|
||||
Reference in New Issue
Block a user