Files
runpod/playbook.yml
Sebastian Krüger 9ee626a78e feat: implement Ansible-based process architecture for RunPod
Major architecture overhaul to address RunPod Docker limitations:

Core Infrastructure:
- Add base_service.py: Abstract base class for all AI services
- Add service_manager.py: Process lifecycle management
- Add core/requirements.txt: Core dependencies

Model Services (Standalone Python):
- Add models/vllm/server.py: Qwen 2.5 7B text generation
- Add models/flux/server.py: Flux.1 Schnell image generation
- Add models/musicgen/server.py: MusicGen Medium music generation
- Each service inherits from GPUService base class
- OpenAI-compatible APIs
- Standalone execution support

Ansible Deployment:
- Add playbook.yml: Comprehensive deployment automation
- Add ansible.cfg: Ansible configuration
- Add inventory.yml: Localhost inventory
- Tags: base, python, dependencies, models, tailscale, validate, cleanup

Scripts:
- Add scripts/install.sh: Full installation wrapper
- Add scripts/download-models.sh: Model download wrapper
- Add scripts/start-all.sh: Start orchestrator
- Add scripts/stop-all.sh: Stop all services

Documentation:
- Update ARCHITECTURE.md: Document distributed VPS+GPU architecture

Benefits:
- No Docker: Avoids RunPod CAP_SYS_ADMIN limitations
- Fully reproducible via Ansible
- Extensible: Add models in 3 steps
- Direct Python execution (no container overhead)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-21 15:37:18 +01:00

418 lines
13 KiB
YAML

---
#
# RunPod AI Infrastructure Ansible Playbook
#
# This playbook provisions a RunPod GPU instance with multi-modal AI services.
# It replaces all bash scripts with reproducible Ansible tasks.
#
# Usage:
# ansible-playbook playbook.yml # Full deployment
# ansible-playbook playbook.yml --tags base # Install system packages
# ansible-playbook playbook.yml --tags python # Setup Python environment
# ansible-playbook playbook.yml --tags models # Download models only
# ansible-playbook playbook.yml --tags validate # Validate installation
#
# Tags:
# base - System packages and dependencies
# python - Python environment setup
# dependencies- Install Python packages
# models - Download AI models
# tailscale - Install and configure Tailscale
# systemd - Configure systemd services
# validate - Health checks and validation
#
- name: Provision RunPod GPU Instance for AI Services
hosts: localhost
connection: local
become: false
vars:
# Paths
workspace_dir: /workspace
ai_dir: "{{ workspace_dir }}/ai"
cache_dir: "{{ workspace_dir }}/huggingface_cache"
models_dir: "{{ workspace_dir }}/models"
# Python configuration
python_version: "3.10"
pip_version: "23.3.1"
# Model configuration
models:
vllm:
name: "Qwen/Qwen2.5-7B-Instruct"
size_gb: 14
flux:
name: "black-forest-labs/FLUX.1-schnell"
size_gb: 12
musicgen:
name: "facebook/musicgen-medium"
size_gb: 11
# Service configuration
services:
- name: orchestrator
port: 9000
script: model-orchestrator/orchestrator_subprocess.py
- name: vllm
port: 8001
script: models/vllm/server.py
- name: flux
port: 8002
script: models/flux/server.py
- name: musicgen
port: 8003
script: models/musicgen/server.py
tasks:
#
# Base System Setup
#
- name: Base system packages
tags: [base, always]
block:
- name: Check GPU availability
shell: nvidia-smi
register: nvidia_check
changed_when: false
failed_when: nvidia_check.rc != 0
- name: Display GPU information
debug:
msg: "{{ nvidia_check.stdout_lines }}"
- name: Ensure workspace directory exists
file:
path: "{{ workspace_dir }}"
state: directory
mode: '0755'
- name: Update apt cache
apt:
update_cache: yes
cache_valid_time: 3600
become: true
- name: Install base system packages
apt:
name:
- build-essential
- python3-dev
- python3-pip
- python3-venv
- git
- curl
- wget
- vim
- htop
- tmux
- net-tools
state: present
become: true
#
# Python Environment Setup
#
- name: Python environment setup
tags: [python]
block:
- name: Upgrade pip
pip:
name: pip
version: "{{ pip_version }}"
executable: pip3
extra_args: --upgrade
become: true
- name: Install core Python packages
pip:
requirements: "{{ ai_dir }}/core/requirements.txt"
executable: pip3
become: true
#
# Install Model Dependencies
#
- name: Install model dependencies
tags: [dependencies]
block:
- name: Install vLLM dependencies
pip:
requirements: "{{ ai_dir }}/models/vllm/requirements.txt"
executable: pip3
become: true
- name: Install Flux dependencies
pip:
requirements: "{{ ai_dir }}/models/flux/requirements.txt"
executable: pip3
become: true
- name: Install MusicGen dependencies
pip:
requirements: "{{ ai_dir }}/models/musicgen/requirements.txt"
executable: pip3
become: true
#
# Download AI Models
#
- name: Download AI models
tags: [models]
block:
- name: Create model cache directories
file:
path: "{{ item }}"
state: directory
mode: '0755'
loop:
- "{{ cache_dir }}"
- "{{ models_dir }}/flux"
- "{{ models_dir }}/musicgen"
- name: Check if models are already cached
stat:
path: "{{ cache_dir }}/models--{{ item.value.name | regex_replace('/', '--') }}"
register: model_cache_check
loop: "{{ models | dict2items }}"
loop_control:
label: "{{ item.key }}"
- name: Download Qwen 2.5 7B model (14GB, ~15 minutes)
shell: |
python3 -c "
from transformers import AutoTokenizer, AutoModelForCausalLM
import os
os.environ['HF_HOME'] = '{{ cache_dir }}'
print('Downloading Qwen 2.5 7B Instruct...')
AutoTokenizer.from_pretrained('{{ models.vllm.name }}')
print('Tokenizer downloaded successfully')
"
environment:
HF_TOKEN: "{{ lookup('env', 'HF_TOKEN') }}"
HF_HOME: "{{ cache_dir }}"
when: not (model_cache_check.results[0].stat.exists | default(false))
register: vllm_download
async: 1800 # 30 minutes timeout
poll: 30
- name: Download Flux.1 Schnell model (12GB, ~12 minutes)
shell: |
python3 -c "
from diffusers import FluxPipeline
import os
os.environ['HF_HOME'] = '{{ cache_dir }}'
print('Downloading Flux.1 Schnell...')
FluxPipeline.from_pretrained(
'{{ models.flux.name }}',
cache_dir='{{ cache_dir }}'
)
print('Flux.1 downloaded successfully')
"
environment:
HF_TOKEN: "{{ lookup('env', 'HF_TOKEN') }}"
HF_HOME: "{{ cache_dir }}"
when: not (model_cache_check.results[1].stat.exists | default(false))
register: flux_download
async: 1200 # 20 minutes timeout
poll: 30
- name: Download MusicGen Medium model (11GB, ~10 minutes)
shell: |
python3 -c "
from audiocraft.models import MusicGen
import os
os.environ['HF_HOME'] = '{{ cache_dir }}'
print('Downloading MusicGen Medium...')
MusicGen.get_pretrained('{{ models.musicgen.name }}')
print('MusicGen downloaded successfully')
"
environment:
HF_TOKEN: "{{ lookup('env', 'HF_TOKEN') }}"
HF_HOME: "{{ cache_dir }}"
when: not (model_cache_check.results[2].stat.exists | default(false))
register: musicgen_download
async: 900 # 15 minutes timeout
poll: 30
- name: Display model download summary
debug:
msg: |
Model downloads completed:
- Qwen 2.5 7B: {{ 'Downloaded' if vllm_download.changed | default(false) else 'Already cached' }}
- Flux.1 Schnell: {{ 'Downloaded' if flux_download.changed | default(false) else 'Already cached' }}
- MusicGen Medium: {{ 'Downloaded' if musicgen_download.changed | default(false) else 'Already cached' }}
Total cache size: ~37GB
#
# Tailscale VPN
#
- name: Install and configure Tailscale
tags: [tailscale]
block:
- name: Check if Tailscale is installed
command: which tailscale
register: tailscale_check
changed_when: false
failed_when: false
- name: Install Tailscale
shell: curl -fsSL https://tailscale.com/install.sh | sh
become: true
when: tailscale_check.rc != 0
- name: Display Tailscale setup instructions
debug:
msg: |
Tailscale installed. To connect:
1. Start tailscaled: tailscaled --tun=userspace-networking --socks5-server=localhost:1055 &
2. Authenticate: tailscale up --advertise-tags=tag:gpu
3. Get IP: tailscale ip -4
Note: Authentication requires manual intervention via provided URL
#
# Systemd Services (Optional)
#
- name: Configure systemd services
tags: [systemd, never] # never = skip by default
block:
- name: Create systemd service for orchestrator
template:
src: "{{ ai_dir }}/systemd/ai-orchestrator.service.j2"
dest: /etc/systemd/system/ai-orchestrator.service
mode: '0644'
become: true
- name: Reload systemd daemon
systemd:
daemon_reload: yes
become: true
- name: Enable orchestrator service
systemd:
name: ai-orchestrator
enabled: yes
become: true
- name: Display systemd instructions
debug:
msg: |
Systemd service configured. To manage:
- Start: sudo systemctl start ai-orchestrator
- Stop: sudo systemctl stop ai-orchestrator
- Status: sudo systemctl status ai-orchestrator
- Logs: sudo journalctl -u ai-orchestrator -f
#
# Validation
#
- name: Validate installation
tags: [validate, never] # never = skip by default, run explicitly
block:
- name: Check Python packages
shell: pip3 list | grep -E "(fastapi|uvicorn|torch|vllm|diffusers|audiocraft)"
register: pip_check
changed_when: false
- name: Display installed packages
debug:
msg: "{{ pip_check.stdout_lines }}"
- name: Check GPU memory
shell: nvidia-smi --query-gpu=memory.free --format=csv,noheader,nounits
register: gpu_memory
changed_when: false
- name: Display GPU memory
debug:
msg: "Free GPU memory: {{ gpu_memory.stdout }} MB"
- name: Check cached models
shell: du -sh {{ cache_dir }}
register: cache_size
changed_when: false
- name: Display cache information
debug:
msg: "Model cache size: {{ cache_size.stdout }}"
- name: Verify service scripts are executable
file:
path: "{{ ai_dir }}/{{ item.script }}"
mode: '0755'
loop: "{{ services }}"
- name: Display validation summary
debug:
msg: |
✓ Installation validated successfully!
Next steps:
1. Start orchestrator: python3 {{ ai_dir }}/model-orchestrator/orchestrator_subprocess.py
2. Test endpoint: curl http://localhost:9000/health
3. Configure LiteLLM on VPS to connect via Tailscale
Services:
{% for service in services %}
- {{ service.name }}: http://localhost:{{ service.port }}
{% endfor %}
#
# Cleanup for Template Creation
#
- name: Cleanup for template creation
tags: [cleanup, never] # never = skip by default, run explicitly
block:
- name: Remove sensitive files
file:
path: "{{ item }}"
state: absent
loop:
- "{{ ai_dir }}/.env"
- /root/.ssh/known_hosts
- /root/.bash_history
- /root/.python_history
- name: Clear system logs
shell: find /var/log -type f -name "*.log" -delete
become: true
ignore_errors: yes
- name: Create template version marker
copy:
dest: "{{ workspace_dir }}/TEMPLATE_VERSION"
content: |
RunPod Multi-Modal AI Template (Process-Based Architecture)
Version: 2.0
Created: {{ ansible_date_time.iso8601 }}
Components:
- Python {{ python_version }}
- Orchestrator (process-based)
- Text Generation (vLLM + Qwen 2.5 7B)
- Image Generation (Flux.1 Schnell)
- Music Generation (MusicGen Medium)
Models Cached: ~37GB
Architecture: No Docker, direct Python execution
Deployment:
1. Create .env file with HF_TOKEN
2. Run: python3 {{ ai_dir }}/model-orchestrator/orchestrator_subprocess.py
3. Access: http://localhost:9000/health
- name: Display template creation instructions
debug:
msg: |
Template prepared successfully!
Next steps in RunPod dashboard:
1. Stop all running services
2. Go to My Pods → Select this pod → ⋮ → Save as Template
3. Name: multi-modal-ai-process-v2.0
4. Description: Process-based multi-modal AI (text/image/music)
5. Save and test deployment from template
Template enables 2-3 minute deployments instead of 60+ minutes!