Initial commit: RunPod multi-modal AI orchestration stack

- Multi-modal AI infrastructure for RunPod RTX 4090
- Automatic model orchestration (text, image, music)
- Text: vLLM + Qwen 2.5 7B Instruct
- Image: Flux.1 Schnell via OpenEDAI
- Music: MusicGen Medium via AudioCraft
- Cost-optimized sequential loading on single GPU
- Template preparation scripts for rapid deployment
- Comprehensive documentation (README, DEPLOYMENT, TEMPLATE)
This commit is contained in:
2025-11-21 14:34:55 +01:00
commit 277f1c95bd
35 changed files with 7654 additions and 0 deletions

View File

@@ -0,0 +1,359 @@
#!/usr/bin/env python3
"""
AI Model Orchestrator for RunPod RTX 4090
Manages sequential loading of text, image, and music models on a single GPU
Features:
- Automatic model switching based on request type
- OpenAI-compatible API endpoints
- Docker Compose service management
- GPU memory monitoring
- Simple YAML configuration for adding new models
"""
import asyncio
import logging
import os
import time
from typing import Dict, Optional, Any
import docker
import httpx
import yaml
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import JSONResponse, StreamingResponse
from pydantic import BaseModel
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# FastAPI app
app = FastAPI(title="AI Model Orchestrator", version="1.0.0")
# Docker client
docker_client = docker.from_env()
# Global state
current_model: Optional[str] = None
model_registry: Dict[str, Dict[str, Any]] = {}
config: Dict[str, Any] = {}
def load_model_registry():
"""Load model registry from models.yaml"""
global model_registry, config
config_path = os.getenv("MODELS_CONFIG", "/app/models.yaml")
logger.info(f"Loading model registry from {config_path}")
with open(config_path, 'r') as f:
data = yaml.safe_load(f)
model_registry = data.get('models', {})
config = data.get('config', {})
logger.info(f"Loaded {len(model_registry)} models from registry")
for model_name, model_info in model_registry.items():
logger.info(f" - {model_name}: {model_info['description']}")
def get_docker_service_name(service_name: str) -> str:
"""Get full Docker service name with project prefix"""
project_name = os.getenv("COMPOSE_PROJECT_NAME", "ai")
return f"{project_name}_{service_name}_1"
async def stop_current_model():
"""Stop the currently running model service"""
global current_model
if not current_model:
logger.info("No model currently running")
return
model_info = model_registry.get(current_model)
if not model_info:
logger.warning(f"Model {current_model} not found in registry")
current_model = None
return
service_name = get_docker_service_name(model_info['docker_service'])
logger.info(f"Stopping model: {current_model} (service: {service_name})")
try:
container = docker_client.containers.get(service_name)
container.stop(timeout=30)
logger.info(f"Stopped {current_model}")
current_model = None
except docker.errors.NotFound:
logger.warning(f"Container {service_name} not found (already stopped?)")
current_model = None
except Exception as e:
logger.error(f"Error stopping {service_name}: {e}")
raise
async def start_model(model_name: str):
"""Start a model service"""
global current_model
if model_name not in model_registry:
raise HTTPException(status_code=404, detail=f"Model {model_name} not found in registry")
model_info = model_registry[model_name]
service_name = get_docker_service_name(model_info['docker_service'])
logger.info(f"Starting model: {model_name} (service: {service_name})")
logger.info(f" VRAM requirement: {model_info['vram_gb']} GB")
logger.info(f" Estimated startup time: {model_info['startup_time_seconds']}s")
try:
# Start the container
container = docker_client.containers.get(service_name)
container.start()
# Wait for service to be healthy
port = model_info['port']
endpoint = model_info.get('endpoint', '/')
base_url = f"http://localhost:{port}"
logger.info(f"Waiting for {model_name} to be ready at {base_url}...")
max_wait = model_info['startup_time_seconds'] + 60 # Add buffer
start_time = time.time()
async with httpx.AsyncClient() as client:
while time.time() - start_time < max_wait:
try:
# Try health check or root endpoint
health_url = f"{base_url}/health"
try:
response = await client.get(health_url, timeout=5.0)
if response.status_code == 200:
logger.info(f"{model_name} is ready!")
current_model = model_name
return
except:
# Try root endpoint if /health doesn't exist
response = await client.get(base_url, timeout=5.0)
if response.status_code == 200:
logger.info(f"{model_name} is ready!")
current_model = model_name
return
except Exception as e:
logger.debug(f"Waiting for {model_name}... ({e})")
await asyncio.sleep(5)
raise HTTPException(
status_code=503,
detail=f"Model {model_name} failed to start within {max_wait}s"
)
except docker.errors.NotFound:
raise HTTPException(
status_code=500,
detail=f"Docker service {service_name} not found. Is it defined in docker-compose?"
)
except Exception as e:
logger.error(f"Error starting {model_name}: {e}")
raise HTTPException(status_code=500, detail=str(e))
async def ensure_model_running(model_name: str):
"""Ensure the specified model is running, switching if necessary"""
global current_model
if current_model == model_name:
logger.info(f"Model {model_name} already running")
return
logger.info(f"Switching model: {current_model} -> {model_name}")
# Stop current model
await stop_current_model()
# Start requested model
await start_model(model_name)
logger.info(f"Model switch complete: {model_name} is now active")
async def proxy_request(model_name: str, request: Request):
"""Proxy request to the active model service"""
model_info = model_registry[model_name]
port = model_info['port']
# Get request details
path = request.url.path
method = request.method
headers = dict(request.headers)
headers.pop('host', None) # Remove host header
# Build target URL
target_url = f"http://localhost:{port}{path}"
logger.info(f"Proxying {method} request to {target_url}")
async with httpx.AsyncClient(timeout=300.0) as client:
# Handle different request types
if method == "GET":
response = await client.get(target_url, headers=headers)
elif method == "POST":
body = await request.body()
response = await client.post(target_url, content=body, headers=headers)
else:
raise HTTPException(status_code=405, detail=f"Method {method} not supported")
# Return response
return JSONResponse(
content=response.json() if response.headers.get('content-type', '').startswith('application/json') else response.text,
status_code=response.status_code,
headers=dict(response.headers)
)
@app.on_event("startup")
async def startup_event():
"""Load model registry on startup"""
load_model_registry()
logger.info("AI Model Orchestrator started successfully")
logger.info(f"GPU Memory: {config.get('gpu_memory_total_gb', 24)} GB")
logger.info(f"Default model: {config.get('default_model', 'qwen-2.5-7b')}")
@app.get("/")
async def root():
"""Root endpoint"""
return {
"service": "AI Model Orchestrator",
"version": "1.0.0",
"current_model": current_model,
"available_models": list(model_registry.keys())
}
@app.get("/health")
async def health():
"""Health check endpoint"""
return {
"status": "healthy",
"current_model": current_model,
"model_info": model_registry.get(current_model) if current_model else None,
"gpu_memory_total_gb": config.get('gpu_memory_total_gb', 24),
"models_available": len(model_registry)
}
@app.get("/models")
async def list_models():
"""List all available models"""
return {
"models": model_registry,
"current_model": current_model
}
@app.post("/v1/chat/completions")
async def chat_completions(request: Request):
"""OpenAI-compatible chat completions endpoint (text models)"""
# Parse request to get model name
body = await request.json()
model_name = body.get('model', config.get('default_model', 'qwen-2.5-7b'))
# Validate model type
if model_name not in model_registry:
raise HTTPException(status_code=404, detail=f"Model {model_name} not found")
if model_registry[model_name]['type'] != 'text':
raise HTTPException(status_code=400, detail=f"Model {model_name} is not a text model")
# Ensure model is running
await ensure_model_running(model_name)
# Proxy request to model
return await proxy_request(model_name, request)
@app.post("/v1/images/generations")
async def image_generations(request: Request):
"""OpenAI-compatible image generation endpoint"""
# Parse request to get model name
body = await request.json()
model_name = body.get('model', 'flux-schnell')
# Validate model type
if model_name not in model_registry:
raise HTTPException(status_code=404, detail=f"Model {model_name} not found")
if model_registry[model_name]['type'] != 'image':
raise HTTPException(status_code=400, detail=f"Model {model_name} is not an image model")
# Ensure model is running
await ensure_model_running(model_name)
# Proxy request to model
return await proxy_request(model_name, request)
@app.post("/v1/audio/generations")
async def audio_generations(request: Request):
"""Custom audio generation endpoint (music/sound effects)"""
# Parse request to get model name
body = await request.json()
model_name = body.get('model', 'musicgen-medium')
# Validate model type
if model_name not in model_registry:
raise HTTPException(status_code=404, detail=f"Model {model_name} not found")
if model_registry[model_name]['type'] != 'audio':
raise HTTPException(status_code=400, detail=f"Model {model_name} is not an audio model")
# Ensure model is running
await ensure_model_running(model_name)
# Proxy request to model
return await proxy_request(model_name, request)
@app.post("/switch")
async def switch_model(request: Request):
"""Manually switch to a specific model"""
body = await request.json()
model_name = body.get('model')
if not model_name:
raise HTTPException(status_code=400, detail="Model name required")
if model_name not in model_registry:
raise HTTPException(status_code=404, detail=f"Model {model_name} not found")
await ensure_model_running(model_name)
return {
"status": "success",
"model": model_name,
"message": f"Switched to {model_name}"
}
if __name__ == "__main__":
import uvicorn
host = os.getenv("HOST", "0.0.0.0")
port = int(os.getenv("PORT", "9000"))
logger.info(f"Starting AI Model Orchestrator on {host}:{port}")
uvicorn.run(
app,
host=host,
port=port,
log_level="info",
access_log=True,
)