Update what we log to make `RUST_LOG=debug` a bit easier to work with. --- [//]: # (BEGIN SAPLING FOOTER) Stack created with [Sapling](https://sapling-scm.com). Best reviewed with [ReviewStack](https://reviewstack.dev/openai/codex/pull/1196). * #1167 * __->__ #1196
158 lines
4.8 KiB
Rust
158 lines
4.8 KiB
Rust
use serde::Serialize;
|
||
use serde_json::json;
|
||
use std::collections::BTreeMap;
|
||
use std::sync::LazyLock;
|
||
|
||
use crate::client_common::Prompt;
|
||
|
||
#[derive(Debug, Clone, Serialize)]
|
||
pub(crate) struct ResponsesApiTool {
|
||
name: &'static str,
|
||
description: &'static str,
|
||
strict: bool,
|
||
parameters: JsonSchema,
|
||
}
|
||
|
||
/// When serialized as JSON, this produces a valid "Tool" in the OpenAI
|
||
/// Responses API.
|
||
#[derive(Debug, Clone, Serialize)]
|
||
#[serde(tag = "type")]
|
||
pub(crate) enum OpenAiTool {
|
||
#[serde(rename = "function")]
|
||
Function(ResponsesApiTool),
|
||
#[serde(rename = "local_shell")]
|
||
LocalShell {},
|
||
}
|
||
|
||
/// Generic JSON‑Schema subset needed for our tool definitions
|
||
#[derive(Debug, Clone, Serialize)]
|
||
#[serde(tag = "type", rename_all = "lowercase")]
|
||
pub(crate) enum JsonSchema {
|
||
String,
|
||
Number,
|
||
Array {
|
||
items: Box<JsonSchema>,
|
||
},
|
||
Object {
|
||
properties: BTreeMap<String, JsonSchema>,
|
||
required: &'static [&'static str],
|
||
#[serde(rename = "additionalProperties")]
|
||
additional_properties: bool,
|
||
},
|
||
}
|
||
|
||
/// Tool usage specification
|
||
static DEFAULT_TOOLS: LazyLock<Vec<OpenAiTool>> = LazyLock::new(|| {
|
||
let mut properties = BTreeMap::new();
|
||
properties.insert(
|
||
"command".to_string(),
|
||
JsonSchema::Array {
|
||
items: Box::new(JsonSchema::String),
|
||
},
|
||
);
|
||
properties.insert("workdir".to_string(), JsonSchema::String);
|
||
properties.insert("timeout".to_string(), JsonSchema::Number);
|
||
|
||
vec![OpenAiTool::Function(ResponsesApiTool {
|
||
name: "shell",
|
||
description: "Runs a shell command, and returns its output.",
|
||
strict: false,
|
||
parameters: JsonSchema::Object {
|
||
properties,
|
||
required: &["command"],
|
||
additional_properties: false,
|
||
},
|
||
})]
|
||
});
|
||
|
||
static DEFAULT_CODEX_MODEL_TOOLS: LazyLock<Vec<OpenAiTool>> =
|
||
LazyLock::new(|| vec![OpenAiTool::LocalShell {}]);
|
||
|
||
/// Returns JSON values that are compatible with Function Calling in the
|
||
/// Responses API:
|
||
/// https://platform.openai.com/docs/guides/function-calling?api-mode=responses
|
||
pub(crate) fn create_tools_json_for_responses_api(
|
||
prompt: &Prompt,
|
||
model: &str,
|
||
) -> crate::error::Result<Vec<serde_json::Value>> {
|
||
// Assemble tool list: built-in tools + any extra tools from the prompt.
|
||
let default_tools = if model.starts_with("codex") {
|
||
&DEFAULT_CODEX_MODEL_TOOLS
|
||
} else {
|
||
&DEFAULT_TOOLS
|
||
};
|
||
let mut tools_json = Vec::with_capacity(default_tools.len() + prompt.extra_tools.len());
|
||
for t in default_tools.iter() {
|
||
tools_json.push(serde_json::to_value(t)?);
|
||
}
|
||
tools_json.extend(
|
||
prompt
|
||
.extra_tools
|
||
.clone()
|
||
.into_iter()
|
||
.map(|(name, tool)| mcp_tool_to_openai_tool(name, tool)),
|
||
);
|
||
|
||
Ok(tools_json)
|
||
}
|
||
|
||
/// Returns JSON values that are compatible with Function Calling in the
|
||
/// Chat Completions API:
|
||
/// https://platform.openai.com/docs/guides/function-calling?api-mode=chat
|
||
pub(crate) fn create_tools_json_for_chat_completions_api(
|
||
prompt: &Prompt,
|
||
model: &str,
|
||
) -> crate::error::Result<Vec<serde_json::Value>> {
|
||
// We start with the JSON for the Responses API and than rewrite it to match
|
||
// the chat completions tool call format.
|
||
let responses_api_tools_json = create_tools_json_for_responses_api(prompt, model)?;
|
||
let tools_json = responses_api_tools_json
|
||
.into_iter()
|
||
.filter_map(|mut tool| {
|
||
if tool.get("type") != Some(&serde_json::Value::String("function".to_string())) {
|
||
return None;
|
||
}
|
||
|
||
if let Some(map) = tool.as_object_mut() {
|
||
// Remove "type" field as it is not needed in chat completions.
|
||
map.remove("type");
|
||
Some(json!({
|
||
"type": "function",
|
||
"function": map,
|
||
}))
|
||
} else {
|
||
None
|
||
}
|
||
})
|
||
.collect::<Vec<serde_json::Value>>();
|
||
Ok(tools_json)
|
||
}
|
||
|
||
fn mcp_tool_to_openai_tool(
|
||
fully_qualified_name: String,
|
||
tool: mcp_types::Tool,
|
||
) -> serde_json::Value {
|
||
let mcp_types::Tool {
|
||
description,
|
||
mut input_schema,
|
||
..
|
||
} = tool;
|
||
|
||
// OpenAI models mandate the "properties" field in the schema. The Agents
|
||
// SDK fixed this by inserting an empty object for "properties" if it is not
|
||
// already present https://github.com/openai/openai-agents-python/issues/449
|
||
// so here we do the same.
|
||
if input_schema.properties.is_none() {
|
||
input_schema.properties = Some(serde_json::Value::Object(serde_json::Map::new()));
|
||
}
|
||
|
||
// TODO(mbolin): Change the contract of this function to return
|
||
// ResponsesApiTool.
|
||
json!({
|
||
"name": fully_qualified_name,
|
||
"description": description,
|
||
"parameters": input_schema,
|
||
"type": "function",
|
||
})
|
||
}
|