Files
llmx/codex-cli/src/utils/model-utils.ts
Govind Kamtamneni 7795272282 Adds Azure OpenAI support (#769)
## Summary

This PR introduces support for Azure OpenAI as a provider within the
Codex CLI. Users can now configure the tool to leverage their Azure
OpenAI deployments by specifying `"azure"` as the provider in
`config.json` and setting the corresponding `AZURE_OPENAI_API_KEY` and
`AZURE_OPENAI_API_VERSION` environment variables. This functionality is
added alongside the existing provider options (OpenAI, OpenRouter,
etc.).

Related to #92

**Note:** This PR is currently in **Draft** status because tests on the
`main` branch are failing. It will be marked as ready for review once
the `main` branch is stable and tests are passing.

---

## What’s Changed

-   **Configuration (`config.ts`, `providers.ts`, `README.md`):**
- Added `"azure"` to the supported `providers` list in `providers.ts`,
specifying its name, default base URL structure, and environment
variable key (`AZURE_OPENAI_API_KEY`).
- Defined the `AZURE_OPENAI_API_VERSION` environment variable in
`config.ts` with a default value (`2025-03-01-preview`).
    -   Updated `README.md` to:
        -   Include "azure" in the list of providers.
- Add a configuration section for Azure OpenAI, detailing the required
environment variables (`AZURE_OPENAI_API_KEY`,
`AZURE_OPENAI_API_VERSION`) with examples.
- **Client Instantiation (`terminal-chat.tsx`, `singlepass-cli-app.tsx`,
`agent-loop.ts`, `compact-summary.ts`, `model-utils.ts`):**
- Modified various components and utility functions where the OpenAI
client is initialized.
- Added conditional logic to check if the configured `provider` is
`"azure"`.
- If the provider is Azure, the `AzureOpenAI` client from the `openai`
package is instantiated, using the configured `baseURL`, `apiKey` (from
`AZURE_OPENAI_API_KEY`), and `apiVersion` (from
`AZURE_OPENAI_API_VERSION`).
- Otherwise, the standard `OpenAI` client is instantiated as before.
-   **Dependencies:**
- Relies on the `openai` package's built-in support for `AzureOpenAI`.
No *new* external dependencies were added specifically for this Azure
implementation beyond the `openai` package itself.

---

## How to Test

*This has been tested locally and confirmed working with Azure OpenAI.*

1.  **Configure `config.json`:**
Ensure your `~/.codex/config.json` (or project-specific config) includes
Azure and sets it as the active provider:
    ```json
    {
      "providers": {
        // ... other providers
        "azure": {
          "name": "AzureOpenAI",
"baseURL": "https://YOUR_RESOURCE_NAME.openai.azure.com", // Replace
with your Azure endpoint
          "envKey": "AZURE_OPENAI_API_KEY"
        }
      },
      "provider": "azure", // Set Azure as the active provider
      "model": "o4-mini" // Use your Azure deployment name here
      // ... other config settings
    }
    ```
2.  **Set up Environment Variables:**
    ```bash
    # Set the API Key for your Azure OpenAI resource
    export AZURE_OPENAI_API_KEY="your-azure-api-key-here"

# Set the API Version (Optional - defaults to `2025-03-01-preview` if
not set)
# Ensure this version is supported by your Azure deployment and endpoint
    export AZURE_OPENAI_API_VERSION="2025-03-01-preview"
    ```
3.  **Get the Codex CLI by building from this PR branch:**
Clone your fork, checkout this branch (`feat/azure-openai`), navigate to
`codex-cli`, and build:
    ```bash
    # cd /path/to/your/fork/codex
    git checkout feat/azure-openai # Or your branch name
    cd codex-cli
    corepack enable
    pnpm install
    pnpm build
    ```
4.  **Invoke Codex:**
Run the locally built CLI using `node` from the `codex-cli` directory:
    ```bash
    node ./dist/cli.js "Explain the purpose of this PR"
    ```
*(Alternatively, if you ran `pnpm link` after building, you can use
`codex "Explain the purpose of this PR"` from anywhere)*.
5. **Verify:** Confirm that the command executes successfully and
interacts with your configured Azure OpenAI deployment.

---

## Tests

- [x] Tested locally against an Azure OpenAI deployment using API Key
authentication. Basic commands and interactions confirmed working.

---

## Checklist

- [x] Added Azure provider details to configuration files
(`providers.ts`, `config.ts`).
- [x] Implemented conditional `AzureOpenAI` client initialization based
on provider setting.
-   [x] Ensured `apiVersion` is passed correctly to the Azure client.
-   [x] Updated `README.md` with Azure OpenAI setup instructions.
- [x] Manually tested core functionality against a live Azure OpenAI
endpoint.
- [x] Add/update automated tests for the Azure code path (pending `main`
stability).

cc @theabhinavdas @nikodem-wrona @fouad-openai @tibo-openai (adjust as
needed)

---

I have read the CLA Document and I hereby sign the CLA
2025-05-09 18:11:32 -07:00

197 lines
7.1 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
import type { ResponseItem } from "openai/resources/responses/responses.mjs";
import { approximateTokensUsed } from "./approximate-tokens-used.js";
import { getApiKey } from "./config.js";
import { type SupportedModelId, openAiModelInfo } from "./model-info.js";
import { createOpenAIClient } from "./openai-client.js";
const MODEL_LIST_TIMEOUT_MS = 2_000; // 2 seconds
export const RECOMMENDED_MODELS: Array<string> = ["o4-mini", "o3"];
/**
* Background model loader / cache.
*
* We start fetching the list of available models from OpenAI once the CLI
* enters interactive mode. The request is made exactly once during the
* lifetime of the process and the results are cached for subsequent calls.
*/
async function fetchModels(provider: string): Promise<Array<string>> {
// If the user has not configured an API key we cannot retrieve the models.
if (!getApiKey(provider)) {
throw new Error("No API key configured for provider: " + provider);
}
try {
const openai = createOpenAIClient({ provider });
const list = await openai.models.list();
const models: Array<string> = [];
for await (const model of list as AsyncIterable<{ id?: string }>) {
if (model && typeof model.id === "string") {
let modelStr = model.id;
// Fix for gemini.
if (modelStr.startsWith("models/")) {
modelStr = modelStr.replace("models/", "");
}
models.push(modelStr);
}
}
return models.sort();
} catch (error) {
return [];
}
}
/** Returns the list of models available for the provided key / credentials. */
export async function getAvailableModels(
provider: string,
): Promise<Array<string>> {
return fetchModels(provider.toLowerCase());
}
/**
* Verifies that the provided model identifier is present in the set returned by
* {@link getAvailableModels}.
*/
export async function isModelSupportedForResponses(
provider: string,
model: string | undefined | null,
): Promise<boolean> {
if (
typeof model !== "string" ||
model.trim() === "" ||
RECOMMENDED_MODELS.includes(model)
) {
return true;
}
try {
const models = await Promise.race<Array<string>>([
getAvailableModels(provider),
new Promise<Array<string>>((resolve) =>
setTimeout(() => resolve([]), MODEL_LIST_TIMEOUT_MS),
),
]);
// If the timeout fired we get an empty list → treat as supported to avoid
// false negatives.
if (models.length === 0) {
return true;
}
return models.includes(model.trim());
} catch {
// Network or library failure → don't block startup.
return true;
}
}
/** Returns the maximum context length (in tokens) for a given model. */
export function maxTokensForModel(model: string): number {
if (model in openAiModelInfo) {
return openAiModelInfo[model as SupportedModelId].maxContextLength;
}
// fallback to heuristics for models not in the registry
const lower = model.toLowerCase();
if (lower.includes("32k")) {
return 32000;
}
if (lower.includes("16k")) {
return 16000;
}
if (lower.includes("8k")) {
return 8000;
}
if (lower.includes("4k")) {
return 4000;
}
return 128000; // Default to 128k for any other model.
}
/** Calculates the percentage of tokens remaining in context for a model. */
export function calculateContextPercentRemaining(
items: Array<ResponseItem>,
model: string,
): number {
const used = approximateTokensUsed(items);
const max = maxTokensForModel(model);
const remaining = Math.max(0, max - used);
return (remaining / max) * 100;
}
/**
* Typeguard that narrows a {@link ResponseItem} to one that represents a
* userauthored message. The OpenAI SDK represents both input *and* output
* messages with a discriminated union where:
* • `type` is the string literal "message" and
* • `role` is one of "user" | "assistant" | "system" | "developer".
*
* For the purposes of deduplication we only care about *user* messages so we
* detect those here in a single, reusable helper.
*/
function isUserMessage(
item: ResponseItem,
): item is ResponseItem & { type: "message"; role: "user"; content: unknown } {
return item.type === "message" && (item as { role?: string }).role === "user";
}
/**
* Deduplicate the stream of {@link ResponseItem}s before they are persisted in
* component state.
*
* Historically we used the (optional) {@code id} field returned by the
* OpenAI streaming API as the primary key: the first occurrence of any given
* {@code id} “won” and subsequent duplicates were dropped. In practice this
* proved brittle because locallygenerated user messages dont include an
* {@code id}. The result was that if a user quickly pressed <Enter> twice the
* exact same message would appear twice in the transcript.
*
* The new rules are therefore:
* 1. If a {@link ResponseItem} has an {@code id} keep only the *first*
* occurrence of that {@code id} (this retains the previous behaviour for
* assistant / tool messages).
* 2. Additionally, collapse *consecutive* user messages with identical
* content. Two messages are considered identical when their serialized
* {@code content} array matches exactly. We purposefully restrict this
* to **adjacent** duplicates so that legitimately repeated questions at
* a later point in the conversation are still shown.
*/
export function uniqueById(items: Array<ResponseItem>): Array<ResponseItem> {
const seenIds = new Set<string>();
const deduped: Array<ResponseItem> = [];
for (const item of items) {
// ──────────────────────────────────────────────────────────────────
// Rule #1 deduplicate by id when present
// ──────────────────────────────────────────────────────────────────
if (typeof item.id === "string" && item.id.length > 0) {
if (seenIds.has(item.id)) {
continue; // skip duplicates
}
seenIds.add(item.id);
}
// ──────────────────────────────────────────────────────────────────
// Rule #2 collapse consecutive identical user messages
// ──────────────────────────────────────────────────────────────────
if (isUserMessage(item) && deduped.length > 0) {
const prev = deduped[deduped.length - 1]!;
if (
isUserMessage(prev) &&
// Note: the `content` field is an array of message parts. Performing
// a deep compare is overkill here; serialising to JSON is sufficient
// (and fast for the tiny payloads involved).
JSON.stringify(prev.content) === JSON.stringify(item.content)
) {
continue; // skip duplicate user message
}
}
deduped.push(item);
}
return deduped;
}