Files
llmx/codex-rs/core/src/client_common.rs
easong-openai e0303dbac0 Rescue chat completion changes (#1846)
https://github.com/openai/codex/pull/1835 has some messed up history.

This adds support for streaming chat completions, which is useful for ollama. We should probably take a very skeptical eye to the code introduced in this PR.

---------

Co-authored-by: Ahmed Ibrahim <aibrahim@openai.com>
2025-08-05 08:56:13 +00:00

197 lines
6.5 KiB
Rust

use crate::config_types::ReasoningEffort as ReasoningEffortConfig;
use crate::config_types::ReasoningSummary as ReasoningSummaryConfig;
use crate::error::Result;
use crate::model_family::ModelFamily;
use crate::models::ResponseItem;
use crate::protocol::TokenUsage;
use codex_apply_patch::APPLY_PATCH_TOOL_INSTRUCTIONS;
use futures::Stream;
use serde::Serialize;
use std::borrow::Cow;
use std::collections::HashMap;
use std::pin::Pin;
use std::task::Context;
use std::task::Poll;
use tokio::sync::mpsc;
/// The `instructions` field in the payload sent to a model should always start
/// with this content.
const BASE_INSTRUCTIONS: &str = include_str!("../prompt.md");
/// wraps user instructions message in a tag for the model to parse more easily.
const USER_INSTRUCTIONS_START: &str = "<user_instructions>\n\n";
const USER_INSTRUCTIONS_END: &str = "\n\n</user_instructions>";
/// API request payload for a single model turn.
#[derive(Default, Debug, Clone)]
pub struct Prompt {
/// Conversation context input items.
pub input: Vec<ResponseItem>,
/// Optional instructions from the user to amend to the built-in agent
/// instructions.
pub user_instructions: Option<String>,
/// Whether to store response on server side (disable_response_storage = !store).
pub store: bool,
/// Additional tools sourced from external MCP servers. Note each key is
/// the "fully qualified" tool name (i.e., prefixed with the server name),
/// which should be reported to the model in place of Tool::name.
pub extra_tools: HashMap<String, mcp_types::Tool>,
/// Optional override for the built-in BASE_INSTRUCTIONS.
pub base_instructions_override: Option<String>,
}
impl Prompt {
pub(crate) fn get_full_instructions(&self, model: &ModelFamily) -> Cow<'_, str> {
let base = self
.base_instructions_override
.as_deref()
.unwrap_or(BASE_INSTRUCTIONS);
let mut sections: Vec<&str> = vec![base];
if model.needs_special_apply_patch_instructions {
sections.push(APPLY_PATCH_TOOL_INSTRUCTIONS);
}
Cow::Owned(sections.join("\n"))
}
pub(crate) fn get_formatted_user_instructions(&self) -> Option<String> {
self.user_instructions
.as_ref()
.map(|ui| format!("{USER_INSTRUCTIONS_START}{ui}{USER_INSTRUCTIONS_END}"))
}
}
#[derive(Debug)]
pub enum ResponseEvent {
Created,
OutputItemDone(ResponseItem),
Completed {
response_id: String,
token_usage: Option<TokenUsage>,
},
OutputTextDelta(String),
ReasoningSummaryDelta(String),
ReasoningContentDelta(String),
}
#[derive(Debug, Serialize)]
pub(crate) struct Reasoning {
pub(crate) effort: OpenAiReasoningEffort,
#[serde(skip_serializing_if = "Option::is_none")]
pub(crate) summary: Option<OpenAiReasoningSummary>,
}
/// See https://platform.openai.com/docs/guides/reasoning?api-mode=responses#get-started-with-reasoning
#[derive(Debug, Serialize, Default, Clone, Copy)]
#[serde(rename_all = "lowercase")]
pub(crate) enum OpenAiReasoningEffort {
Low,
#[default]
Medium,
High,
}
impl From<ReasoningEffortConfig> for Option<OpenAiReasoningEffort> {
fn from(effort: ReasoningEffortConfig) -> Self {
match effort {
ReasoningEffortConfig::Low => Some(OpenAiReasoningEffort::Low),
ReasoningEffortConfig::Medium => Some(OpenAiReasoningEffort::Medium),
ReasoningEffortConfig::High => Some(OpenAiReasoningEffort::High),
ReasoningEffortConfig::None => None,
}
}
}
/// A summary of the reasoning performed by the model. This can be useful for
/// debugging and understanding the model's reasoning process.
/// See https://platform.openai.com/docs/guides/reasoning?api-mode=responses#reasoning-summaries
#[derive(Debug, Serialize, Default, Clone, Copy)]
#[serde(rename_all = "lowercase")]
pub(crate) enum OpenAiReasoningSummary {
#[default]
Auto,
Concise,
Detailed,
}
impl From<ReasoningSummaryConfig> for Option<OpenAiReasoningSummary> {
fn from(summary: ReasoningSummaryConfig) -> Self {
match summary {
ReasoningSummaryConfig::Auto => Some(OpenAiReasoningSummary::Auto),
ReasoningSummaryConfig::Concise => Some(OpenAiReasoningSummary::Concise),
ReasoningSummaryConfig::Detailed => Some(OpenAiReasoningSummary::Detailed),
ReasoningSummaryConfig::None => None,
}
}
}
/// Request object that is serialized as JSON and POST'ed when using the
/// Responses API.
#[derive(Debug, Serialize)]
pub(crate) struct ResponsesApiRequest<'a> {
pub(crate) model: &'a str,
pub(crate) instructions: &'a str,
// TODO(mbolin): ResponseItem::Other should not be serialized. Currently,
// we code defensively to avoid this case, but perhaps we should use a
// separate enum for serialization.
pub(crate) input: &'a Vec<ResponseItem>,
pub(crate) tools: &'a [serde_json::Value],
pub(crate) tool_choice: &'static str,
pub(crate) parallel_tool_calls: bool,
pub(crate) reasoning: Option<Reasoning>,
/// true when using the Responses API.
pub(crate) store: bool,
pub(crate) stream: bool,
pub(crate) include: Vec<String>,
}
pub(crate) fn create_reasoning_param_for_request(
model_family: &ModelFamily,
effort: ReasoningEffortConfig,
summary: ReasoningSummaryConfig,
) -> Option<Reasoning> {
if model_family.supports_reasoning_summaries {
let effort: Option<OpenAiReasoningEffort> = effort.into();
let effort = effort?;
Some(Reasoning {
effort,
summary: summary.into(),
})
} else {
None
}
}
pub(crate) struct ResponseStream {
pub(crate) rx_event: mpsc::Receiver<Result<ResponseEvent>>,
}
impl Stream for ResponseStream {
type Item = Result<ResponseEvent>;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
self.rx_event.poll_recv(cx)
}
}
#[cfg(test)]
mod tests {
#![allow(clippy::expect_used)]
use crate::model_family::find_family_for_model;
use super::*;
#[test]
fn get_full_instructions_no_user_content() {
let prompt = Prompt {
user_instructions: Some("custom instruction".to_string()),
..Default::default()
};
let expected = format!("{BASE_INSTRUCTIONS}\n{APPLY_PATCH_TOOL_INSTRUCTIONS}");
let model_family = find_family_for_model("gpt-4.1").expect("known model slug");
let full = prompt.get_full_instructions(&model_family);
assert_eq!(full, expected);
}
}