Files
llmx/codex-rs/core/src/client_common.rs
Dylan 544980c008 [context] Store context messages in rollouts (#2243)
## Summary
Currently, we use request-time logic to determine the user_instructions
and environment_context messages. This means that neither of these
values can change over time as conversations go on. We want to add in
additional details here, so we're migrating these to save these messages
to the rollout file instead. This is simpler for the client, and allows
us to append additional environment_context messages to each turn if we
want

## Testing
- [x] Integration test coverage
- [x] Tested locally with a few turns, confirmed model could reference
environment context and cached token metrics were reasonably high
2025-08-14 14:51:13 -04:00

206 lines
6.6 KiB
Rust

use crate::config_types::ReasoningEffort as ReasoningEffortConfig;
use crate::config_types::ReasoningSummary as ReasoningSummaryConfig;
use crate::error::Result;
use crate::model_family::ModelFamily;
use crate::models::ContentItem;
use crate::models::ResponseItem;
use crate::openai_tools::OpenAiTool;
use crate::protocol::TokenUsage;
use codex_apply_patch::APPLY_PATCH_TOOL_INSTRUCTIONS;
use futures::Stream;
use serde::Serialize;
use std::borrow::Cow;
use std::pin::Pin;
use std::task::Context;
use std::task::Poll;
use tokio::sync::mpsc;
/// The `instructions` field in the payload sent to a model should always start
/// with this content.
const BASE_INSTRUCTIONS: &str = include_str!("../prompt.md");
/// wraps user instructions message in a tag for the model to parse more easily.
const USER_INSTRUCTIONS_START: &str = "<user_instructions>\n\n";
const USER_INSTRUCTIONS_END: &str = "\n\n</user_instructions>";
/// API request payload for a single model turn
#[derive(Default, Debug, Clone)]
pub struct Prompt {
/// Conversation context input items.
pub input: Vec<ResponseItem>,
/// Whether to store response on server side (disable_response_storage = !store).
pub store: bool,
/// Tools available to the model, including additional tools sourced from
/// external MCP servers.
pub tools: Vec<OpenAiTool>,
/// Optional override for the built-in BASE_INSTRUCTIONS.
pub base_instructions_override: Option<String>,
}
impl Prompt {
pub(crate) fn get_full_instructions(&self, model: &ModelFamily) -> Cow<'_, str> {
let base = self
.base_instructions_override
.as_deref()
.unwrap_or(BASE_INSTRUCTIONS);
let mut sections: Vec<&str> = vec![base];
if model.needs_special_apply_patch_instructions {
sections.push(APPLY_PATCH_TOOL_INSTRUCTIONS);
}
Cow::Owned(sections.join("\n"))
}
pub(crate) fn get_formatted_input(&self) -> Vec<ResponseItem> {
self.input.clone()
}
/// Creates a formatted user instructions message from a string
pub(crate) fn format_user_instructions_message(ui: &str) -> ResponseItem {
ResponseItem::Message {
id: None,
role: "user".to_string(),
content: vec![ContentItem::InputText {
text: format!("{USER_INSTRUCTIONS_START}{ui}{USER_INSTRUCTIONS_END}"),
}],
}
}
}
#[derive(Debug)]
pub enum ResponseEvent {
Created,
OutputItemDone(ResponseItem),
Completed {
response_id: String,
token_usage: Option<TokenUsage>,
},
OutputTextDelta(String),
ReasoningSummaryDelta(String),
ReasoningContentDelta(String),
ReasoningSummaryPartAdded,
}
#[derive(Debug, Serialize)]
pub(crate) struct Reasoning {
pub(crate) effort: OpenAiReasoningEffort,
#[serde(skip_serializing_if = "Option::is_none")]
pub(crate) summary: Option<OpenAiReasoningSummary>,
}
/// See https://platform.openai.com/docs/guides/reasoning?api-mode=responses#get-started-with-reasoning
#[derive(Debug, Serialize, Default, Clone, Copy)]
#[serde(rename_all = "lowercase")]
pub(crate) enum OpenAiReasoningEffort {
Low,
#[default]
Medium,
High,
}
impl From<ReasoningEffortConfig> for Option<OpenAiReasoningEffort> {
fn from(effort: ReasoningEffortConfig) -> Self {
match effort {
ReasoningEffortConfig::Low => Some(OpenAiReasoningEffort::Low),
ReasoningEffortConfig::Medium => Some(OpenAiReasoningEffort::Medium),
ReasoningEffortConfig::High => Some(OpenAiReasoningEffort::High),
ReasoningEffortConfig::None => None,
}
}
}
/// A summary of the reasoning performed by the model. This can be useful for
/// debugging and understanding the model's reasoning process.
/// See https://platform.openai.com/docs/guides/reasoning?api-mode=responses#reasoning-summaries
#[derive(Debug, Serialize, Default, Clone, Copy)]
#[serde(rename_all = "lowercase")]
pub(crate) enum OpenAiReasoningSummary {
#[default]
Auto,
Concise,
Detailed,
}
impl From<ReasoningSummaryConfig> for Option<OpenAiReasoningSummary> {
fn from(summary: ReasoningSummaryConfig) -> Self {
match summary {
ReasoningSummaryConfig::Auto => Some(OpenAiReasoningSummary::Auto),
ReasoningSummaryConfig::Concise => Some(OpenAiReasoningSummary::Concise),
ReasoningSummaryConfig::Detailed => Some(OpenAiReasoningSummary::Detailed),
ReasoningSummaryConfig::None => None,
}
}
}
/// Request object that is serialized as JSON and POST'ed when using the
/// Responses API.
#[derive(Debug, Serialize)]
pub(crate) struct ResponsesApiRequest<'a> {
pub(crate) model: &'a str,
pub(crate) instructions: &'a str,
// TODO(mbolin): ResponseItem::Other should not be serialized. Currently,
// we code defensively to avoid this case, but perhaps we should use a
// separate enum for serialization.
pub(crate) input: &'a Vec<ResponseItem>,
pub(crate) tools: &'a [serde_json::Value],
pub(crate) tool_choice: &'static str,
pub(crate) parallel_tool_calls: bool,
pub(crate) reasoning: Option<Reasoning>,
/// true when using the Responses API.
pub(crate) store: bool,
pub(crate) stream: bool,
pub(crate) include: Vec<String>,
#[serde(skip_serializing_if = "Option::is_none")]
pub(crate) prompt_cache_key: Option<String>,
}
pub(crate) fn create_reasoning_param_for_request(
model_family: &ModelFamily,
effort: ReasoningEffortConfig,
summary: ReasoningSummaryConfig,
) -> Option<Reasoning> {
if model_family.supports_reasoning_summaries {
let effort: Option<OpenAiReasoningEffort> = effort.into();
let effort = effort?;
Some(Reasoning {
effort,
summary: summary.into(),
})
} else {
None
}
}
pub(crate) struct ResponseStream {
pub(crate) rx_event: mpsc::Receiver<Result<ResponseEvent>>,
}
impl Stream for ResponseStream {
type Item = Result<ResponseEvent>;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
self.rx_event.poll_recv(cx)
}
}
#[cfg(test)]
mod tests {
#![allow(clippy::expect_used)]
use crate::model_family::find_family_for_model;
use super::*;
#[test]
fn get_full_instructions_no_user_content() {
let prompt = Prompt {
..Default::default()
};
let expected = format!("{BASE_INSTRUCTIONS}\n{APPLY_PATCH_TOOL_INSTRUCTIONS}");
let model_family = find_family_for_model("gpt-4.1").expect("known model slug");
let full = prompt.get_full_instructions(&model_family);
assert_eq!(full, expected);
}
}