Files
llmx/codex-rs/execpolicy/src/arg_resolver.rs
Michael Bolin 58f0e5ab74 feat: introduce codex_execpolicy crate for defining "safe" commands (#634)
As described in detail in `codex-rs/execpolicy/README.md` introduced in
this PR, `execpolicy` is a tool that lets you define a set of _patterns_
used to match [`execv(3)`](https://linux.die.net/man/3/execv)
invocations. When a pattern is matched, `execpolicy` returns the parsed
version in a structured form that is amenable to static analysis.

The primary use case is to define patterns match commands that should be
auto-approved by a tool such as Codex. This supports a richer pattern
matching mechanism that the sort of prefix-matching we have done to
date, e.g.:


5e40d9d221/codex-cli/src/approvals.ts (L333-L354)

Note we are still playing with the API and the `system_path` option in
particular still needs some work.
2025-04-24 17:14:47 -07:00

195 lines
6.6 KiB
Rust

use serde::Serialize;
use crate::arg_matcher::ArgMatcher;
use crate::arg_matcher::ArgMatcherCardinality;
use crate::error::Error;
use crate::error::Result;
use crate::valid_exec::MatchedArg;
#[derive(Clone, Debug, Eq, PartialEq, Serialize)]
pub struct PositionalArg {
pub index: usize,
pub value: String,
}
pub fn resolve_observed_args_with_patterns(
program: &str,
args: Vec<PositionalArg>,
arg_patterns: &Vec<ArgMatcher>,
) -> Result<Vec<MatchedArg>> {
// Naive matching implementation. Among `arg_patterns`, there is allowed to
// be at most one vararg pattern. Assuming `arg_patterns` is non-empty, we
// end up with either:
//
// - all `arg_patterns` in `prefix_patterns`
// - `arg_patterns` split across `prefix_patterns` (which could be empty),
// one `vararg_pattern`, and `suffix_patterns` (which could also empty).
//
// From there, we start by matching everything in `prefix_patterns`.
// Then we calculate how many positional args should be matched by
// `suffix_patterns` and use that to determine how many args are left to
// be matched by `vararg_pattern` (which could be zero).
//
// After assocating positional args with `vararg_pattern`, we match the
// `suffix_patterns` with the remaining args.
let ParitionedArgs {
num_prefix_args,
num_suffix_args,
prefix_patterns,
suffix_patterns,
vararg_pattern,
} = partition_args(program, arg_patterns)?;
let mut matched_args = Vec::<MatchedArg>::new();
let prefix = get_range_checked(&args, 0..num_prefix_args)?;
let mut prefix_arg_index = 0;
for pattern in prefix_patterns {
let n = pattern.cardinality().is_exact().unwrap();
for positional_arg in &prefix[prefix_arg_index..prefix_arg_index + n] {
let matched_arg = MatchedArg::new(
positional_arg.index,
pattern.arg_type(),
&positional_arg.value.clone(),
)?;
matched_args.push(matched_arg);
}
prefix_arg_index += n;
}
if num_suffix_args > args.len() {
return Err(Error::NotEnoughArgs {
program: program.to_string(),
args,
arg_patterns: arg_patterns.clone(),
});
}
let initial_suffix_args_index = args.len() - num_suffix_args;
if prefix_arg_index > initial_suffix_args_index {
return Err(Error::PrefixOverlapsSuffix {});
}
if let Some(pattern) = vararg_pattern {
let vararg = get_range_checked(&args, prefix_arg_index..initial_suffix_args_index)?;
match pattern.cardinality() {
ArgMatcherCardinality::One => {
return Err(Error::InternalInvariantViolation {
message: "vararg pattern should not have cardinality of one".to_string(),
});
}
ArgMatcherCardinality::AtLeastOne => {
if vararg.is_empty() {
return Err(Error::VarargMatcherDidNotMatchAnything {
program: program.to_string(),
matcher: pattern,
});
} else {
for positional_arg in vararg {
let matched_arg = MatchedArg::new(
positional_arg.index,
pattern.arg_type(),
&positional_arg.value.clone(),
)?;
matched_args.push(matched_arg);
}
}
}
ArgMatcherCardinality::ZeroOrMore => {
for positional_arg in vararg {
let matched_arg = MatchedArg::new(
positional_arg.index,
pattern.arg_type(),
&positional_arg.value.clone(),
)?;
matched_args.push(matched_arg);
}
}
}
}
let suffix = get_range_checked(&args, initial_suffix_args_index..args.len())?;
let mut suffix_arg_index = 0;
for pattern in suffix_patterns {
let n = pattern.cardinality().is_exact().unwrap();
for positional_arg in &suffix[suffix_arg_index..suffix_arg_index + n] {
let matched_arg = MatchedArg::new(
positional_arg.index,
pattern.arg_type(),
&positional_arg.value.clone(),
)?;
matched_args.push(matched_arg);
}
suffix_arg_index += n;
}
if matched_args.len() < args.len() {
let extra_args = get_range_checked(&args, matched_args.len()..args.len())?;
Err(Error::UnexpectedArguments {
program: program.to_string(),
args: extra_args.to_vec(),
})
} else {
Ok(matched_args)
}
}
#[derive(Default)]
struct ParitionedArgs {
num_prefix_args: usize,
num_suffix_args: usize,
prefix_patterns: Vec<ArgMatcher>,
suffix_patterns: Vec<ArgMatcher>,
vararg_pattern: Option<ArgMatcher>,
}
fn partition_args(program: &str, arg_patterns: &Vec<ArgMatcher>) -> Result<ParitionedArgs> {
let mut in_prefix = true;
let mut partitioned_args = ParitionedArgs::default();
for pattern in arg_patterns {
match pattern.cardinality().is_exact() {
Some(n) => {
if in_prefix {
partitioned_args.prefix_patterns.push(pattern.clone());
partitioned_args.num_prefix_args += n;
} else {
partitioned_args.suffix_patterns.push(pattern.clone());
partitioned_args.num_suffix_args += n;
}
}
None => match partitioned_args.vararg_pattern {
None => {
partitioned_args.vararg_pattern = Some(pattern.clone());
in_prefix = false;
}
Some(existing_pattern) => {
return Err(Error::MultipleVarargPatterns {
program: program.to_string(),
first: existing_pattern,
second: pattern.clone(),
});
}
},
}
}
Ok(partitioned_args)
}
fn get_range_checked<T>(vec: &[T], range: std::ops::Range<usize>) -> Result<&[T]> {
if range.start > range.end {
Err(Error::RangeStartExceedsEnd {
start: range.start,
end: range.end,
})
} else if range.end > vec.len() {
Err(Error::RangeEndOutOfBounds {
end: range.end,
len: vec.len(),
})
} else {
Ok(&vec[range])
}
}