Files
llmx/codex-cli/src/utils/responses.ts
Daniel Nakov 4261973467 bug: non-openai mode - don't default temp and top_p (#572)
I haven't seen any actual errors due to this, but it's been bothering me
that I had it defaulted to 1. I think best to leave it undefined and
have each provider do their thing
2025-04-23 01:07:40 -04:00

718 lines
21 KiB
TypeScript

import type { OpenAI } from "openai";
import type {
ResponseCreateParams,
Response,
} from "openai/resources/responses/responses";
// Define interfaces based on OpenAI API documentation
type ResponseCreateInput = ResponseCreateParams;
type ResponseOutput = Response;
// interface ResponseOutput {
// id: string;
// object: 'response';
// created_at: number;
// status: 'completed' | 'failed' | 'in_progress' | 'incomplete';
// error: { code: string; message: string } | null;
// incomplete_details: { reason: string } | null;
// instructions: string | null;
// max_output_tokens: number | null;
// model: string;
// output: Array<{
// type: 'message';
// id: string;
// status: 'completed' | 'in_progress';
// role: 'assistant';
// content: Array<{
// type: 'output_text' | 'function_call';
// text?: string;
// annotations?: Array<any>;
// tool_call?: {
// id: string;
// type: 'function';
// function: { name: string; arguments: string };
// };
// }>;
// }>;
// parallel_tool_calls: boolean;
// previous_response_id: string | null;
// reasoning: { effort: string | null; summary: string | null };
// store: boolean;
// temperature: number;
// text: { format: { type: 'text' } };
// tool_choice: string | object;
// tools: Array<any>;
// top_p: number;
// truncation: string;
// usage: {
// input_tokens: number;
// input_tokens_details: { cached_tokens: number };
// output_tokens: number;
// output_tokens_details: { reasoning_tokens: number };
// total_tokens: number;
// } | null;
// user: string | null;
// metadata: Record<string, string>;
// }
// Define types for the ResponseItem content and parts
type ResponseContentPart = {
type: string;
[key: string]: unknown;
};
type ResponseItemType = {
type: string;
id?: string;
status?: string;
role?: string;
content?: Array<ResponseContentPart>;
[key: string]: unknown;
};
type ResponseEvent =
| { type: "response.created"; response: Partial<ResponseOutput> }
| { type: "response.in_progress"; response: Partial<ResponseOutput> }
| {
type: "response.output_item.added";
output_index: number;
item: ResponseItemType;
}
| {
type: "response.content_part.added";
item_id: string;
output_index: number;
content_index: number;
part: ResponseContentPart;
}
| {
type: "response.output_text.delta";
item_id: string;
output_index: number;
content_index: number;
delta: string;
}
| {
type: "response.output_text.done";
item_id: string;
output_index: number;
content_index: number;
text: string;
}
| {
type: "response.function_call_arguments.delta";
item_id: string;
output_index: number;
content_index: number;
delta: string;
}
| {
type: "response.function_call_arguments.done";
item_id: string;
output_index: number;
content_index: number;
arguments: string;
}
| {
type: "response.content_part.done";
item_id: string;
output_index: number;
content_index: number;
part: ResponseContentPart;
}
| {
type: "response.output_item.done";
output_index: number;
item: ResponseItemType;
}
| { type: "response.completed"; response: ResponseOutput }
| { type: "error"; code: string; message: string; param: string | null };
// Define a type for tool call data
type ToolCallData = {
id: string;
name: string;
arguments: string;
};
// Define a type for usage data
type UsageData = {
prompt_tokens?: number;
completion_tokens?: number;
total_tokens?: number;
input_tokens?: number;
input_tokens_details?: { cached_tokens: number };
output_tokens?: number;
output_tokens_details?: { reasoning_tokens: number };
[key: string]: unknown;
};
// Define a type for content output
type ResponseContentOutput =
| {
type: "function_call";
call_id: string;
name: string;
arguments: string;
[key: string]: unknown;
}
| {
type: "output_text";
text: string;
annotations: Array<unknown>;
[key: string]: unknown;
};
// Global map to store conversation histories
const conversationHistories = new Map<
string,
{
previous_response_id: string | null;
messages: Array<OpenAI.Chat.Completions.ChatCompletionMessageParam>;
}
>();
// Utility function to generate unique IDs
function generateId(prefix: string = "msg"): string {
return `${prefix}_${Math.random().toString(36).substr(2, 9)}`;
}
// Function to convert ResponseInputItem to ChatCompletionMessageParam
type ResponseInputItem = ResponseCreateInput["input"][number];
function convertInputItemToMessage(
item: string | ResponseInputItem,
): OpenAI.Chat.Completions.ChatCompletionMessageParam {
// Handle string inputs as content for a user message
if (typeof item === "string") {
return { role: "user", content: item };
}
// At this point we know it's a ResponseInputItem
const responseItem = item;
if (responseItem.type === "message") {
// Use a more specific type assertion for the message content
const content = Array.isArray(responseItem.content)
? responseItem.content
.filter((c) => typeof c === "object" && c.type === "input_text")
.map((c) =>
typeof c === "object" && "text" in c
? (c["text"] as string) || ""
: "",
)
.join("")
: "";
return { role: responseItem.role, content };
} else if (responseItem.type === "function_call_output") {
return {
role: "tool",
tool_call_id: responseItem.call_id,
content: responseItem.output,
};
}
throw new Error(`Unsupported input item type: ${responseItem.type}`);
}
// Function to get full messages including history
function getFullMessages(
input: ResponseCreateInput,
): Array<OpenAI.Chat.Completions.ChatCompletionMessageParam> {
let baseHistory: Array<OpenAI.Chat.Completions.ChatCompletionMessageParam> =
[];
if (input.previous_response_id) {
const prev = conversationHistories.get(input.previous_response_id);
if (!prev) {
throw new Error(
`Previous response not found: ${input.previous_response_id}`,
);
}
baseHistory = prev.messages;
}
// Handle both string and ResponseInputItem in input.input
const newInputMessages = Array.isArray(input.input)
? input.input.map(convertInputItemToMessage)
: [convertInputItemToMessage(input.input)];
const messages = [...baseHistory, ...newInputMessages];
if (
input.instructions &&
messages[0]?.role !== "system" &&
messages[0]?.role !== "developer"
) {
return [{ role: "system", content: input.instructions }, ...messages];
}
return messages;
}
// Function to convert tools
function convertTools(
tools?: ResponseCreateInput["tools"],
): Array<OpenAI.Chat.Completions.ChatCompletionTool> | undefined {
return tools
?.filter((tool) => tool.type === "function")
.map((tool) => ({
type: "function" as const,
function: {
name: tool.name,
description: tool.description || undefined,
parameters: tool.parameters,
},
}));
}
const createCompletion = (openai: OpenAI, input: ResponseCreateInput) => {
const fullMessages = getFullMessages(input);
const chatTools = convertTools(input.tools);
const webSearchOptions = input.tools?.some(
(tool) => tool.type === "function" && tool.name === "web_search",
)
? {}
: undefined;
const chatInput: OpenAI.Chat.Completions.ChatCompletionCreateParams = {
model: input.model,
messages: fullMessages,
tools: chatTools,
web_search_options: webSearchOptions,
temperature: input.temperature,
top_p: input.top_p,
tool_choice: (input.tool_choice === "auto"
? "auto"
: input.tool_choice) as OpenAI.Chat.Completions.ChatCompletionCreateParams["tool_choice"],
stream: input.stream || false,
user: input.user,
metadata: input.metadata,
};
return openai.chat.completions.create(chatInput);
};
// Main function with overloading
async function responsesCreateViaChatCompletions(
openai: OpenAI,
input: ResponseCreateInput & { stream: true },
): Promise<AsyncGenerator<ResponseEvent>>;
async function responsesCreateViaChatCompletions(
openai: OpenAI,
input: ResponseCreateInput & { stream?: false },
): Promise<ResponseOutput>;
async function responsesCreateViaChatCompletions(
openai: OpenAI,
input: ResponseCreateInput,
): Promise<ResponseOutput | AsyncGenerator<ResponseEvent>> {
const completion = await createCompletion(openai, input);
if (input.stream) {
return streamResponses(
input,
completion as AsyncIterable<OpenAI.ChatCompletionChunk>,
);
} else {
return nonStreamResponses(
input,
completion as unknown as OpenAI.Chat.Completions.ChatCompletion,
);
}
}
// Non-streaming implementation
async function nonStreamResponses(
input: ResponseCreateInput,
completion: OpenAI.Chat.Completions.ChatCompletion,
): Promise<ResponseOutput> {
const fullMessages = getFullMessages(input);
try {
const chatResponse = completion;
if (!("choices" in chatResponse) || chatResponse.choices.length === 0) {
throw new Error("No choices in chat completion response");
}
const assistantMessage = chatResponse.choices?.[0]?.message;
if (!assistantMessage) {
throw new Error("No assistant message in chat completion response");
}
// Construct ResponseOutput
const responseId = generateId("resp");
const outputItemId = generateId("msg");
const outputContent: Array<ResponseContentOutput> = [];
// Check if the response contains tool calls
const hasFunctionCalls =
assistantMessage.tool_calls && assistantMessage.tool_calls.length > 0;
if (hasFunctionCalls && assistantMessage.tool_calls) {
for (const toolCall of assistantMessage.tool_calls) {
if (toolCall.type === "function") {
outputContent.push({
type: "function_call",
call_id: toolCall.id,
name: toolCall.function.name,
arguments: toolCall.function.arguments,
});
}
}
}
if (assistantMessage.content) {
outputContent.push({
type: "output_text",
text: assistantMessage.content,
annotations: [],
});
}
// Create response with appropriate status and properties
const responseOutput = {
id: responseId,
object: "response",
created_at: Math.floor(Date.now() / 1000),
status: hasFunctionCalls ? "requires_action" : "completed",
error: null,
incomplete_details: null,
instructions: null,
max_output_tokens: null,
model: chatResponse.model,
output: [
{
type: "message",
id: outputItemId,
status: "completed",
role: "assistant",
content: outputContent,
},
],
parallel_tool_calls: input.parallel_tool_calls ?? false,
previous_response_id: input.previous_response_id ?? null,
reasoning: null,
temperature: input.temperature,
text: { format: { type: "text" } },
tool_choice: input.tool_choice ?? "auto",
tools: input.tools ?? [],
top_p: input.top_p,
truncation: input.truncation ?? "disabled",
usage: chatResponse.usage
? {
input_tokens: chatResponse.usage.prompt_tokens,
input_tokens_details: { cached_tokens: 0 },
output_tokens: chatResponse.usage.completion_tokens,
output_tokens_details: { reasoning_tokens: 0 },
total_tokens: chatResponse.usage.total_tokens,
}
: undefined,
user: input.user ?? undefined,
metadata: input.metadata ?? {},
output_text: "",
} as ResponseOutput;
// Add required_action property for tool calls
if (hasFunctionCalls && assistantMessage.tool_calls) {
// Define type with required action
type ResponseWithAction = Partial<ResponseOutput> & {
required_action: unknown;
};
// Use the defined type for the assertion
(responseOutput as ResponseWithAction).required_action = {
type: "submit_tool_outputs",
submit_tool_outputs: {
tool_calls: assistantMessage.tool_calls.map((toolCall) => ({
id: toolCall.id,
type: toolCall.type,
function: {
name: toolCall.function.name,
arguments: toolCall.function.arguments,
},
})),
},
};
}
// Store history
const newHistory = [...fullMessages, assistantMessage];
conversationHistories.set(responseId, {
previous_response_id: input.previous_response_id ?? null,
messages: newHistory,
});
return responseOutput;
} catch (error) {
const errorMessage = error instanceof Error ? error.message : String(error);
throw new Error(`Failed to process chat completion: ${errorMessage}`);
}
}
// Streaming implementation
async function* streamResponses(
input: ResponseCreateInput,
completion: AsyncIterable<OpenAI.ChatCompletionChunk>,
): AsyncGenerator<ResponseEvent> {
const fullMessages = getFullMessages(input);
const responseId = generateId("resp");
const outputItemId = generateId("msg");
let textContentAdded = false;
let textContent = "";
const toolCalls = new Map<number, ToolCallData>();
let usage: UsageData | null = null;
const finalOutputItem: Array<ResponseContentOutput> = [];
// Initial response
const initialResponse: Partial<ResponseOutput> = {
id: responseId,
object: "response" as const,
created_at: Math.floor(Date.now() / 1000),
status: "in_progress" as const,
model: input.model,
output: [],
error: null,
incomplete_details: null,
instructions: null,
max_output_tokens: null,
parallel_tool_calls: true,
previous_response_id: input.previous_response_id ?? null,
reasoning: null,
temperature: input.temperature,
text: { format: { type: "text" } },
tool_choice: input.tool_choice ?? "auto",
tools: input.tools ?? [],
top_p: input.top_p,
truncation: input.truncation ?? "disabled",
usage: undefined,
user: input.user ?? undefined,
metadata: input.metadata ?? {},
output_text: "",
};
yield { type: "response.created", response: initialResponse };
yield { type: "response.in_progress", response: initialResponse };
let isToolCall = false;
for await (const chunk of completion as AsyncIterable<OpenAI.ChatCompletionChunk>) {
// console.error('\nCHUNK: ', JSON.stringify(chunk));
const choice = chunk.choices[0];
if (!choice) {
continue;
}
if (
!isToolCall &&
(("tool_calls" in choice.delta && choice.delta.tool_calls) ||
choice.finish_reason === "tool_calls")
) {
isToolCall = true;
}
if (chunk.usage) {
usage = {
prompt_tokens: chunk.usage.prompt_tokens,
completion_tokens: chunk.usage.completion_tokens,
total_tokens: chunk.usage.total_tokens,
input_tokens: chunk.usage.prompt_tokens,
input_tokens_details: { cached_tokens: 0 },
output_tokens: chunk.usage.completion_tokens,
output_tokens_details: { reasoning_tokens: 0 },
};
}
if (isToolCall) {
for (const tcDelta of choice.delta.tool_calls || []) {
const tcIndex = tcDelta.index;
const content_index = textContentAdded ? tcIndex + 1 : tcIndex;
if (!toolCalls.has(tcIndex)) {
// New tool call
const toolCallId = tcDelta.id || generateId("call");
const functionName = tcDelta.function?.name || "";
yield {
type: "response.output_item.added",
item: {
type: "function_call",
id: outputItemId,
status: "in_progress",
call_id: toolCallId,
name: functionName,
arguments: "",
},
output_index: 0,
};
toolCalls.set(tcIndex, {
id: toolCallId,
name: functionName,
arguments: "",
});
}
if (tcDelta.function?.arguments) {
const current = toolCalls.get(tcIndex);
if (current) {
current.arguments += tcDelta.function.arguments;
yield {
type: "response.function_call_arguments.delta",
item_id: outputItemId,
output_index: 0,
content_index,
delta: tcDelta.function.arguments,
};
}
}
}
if (choice.finish_reason === "tool_calls") {
for (const [tcIndex, tc] of toolCalls) {
const item = {
type: "function_call",
id: outputItemId,
status: "completed",
call_id: tc.id,
name: tc.name,
arguments: tc.arguments,
};
yield {
type: "response.function_call_arguments.done",
item_id: outputItemId,
output_index: tcIndex,
content_index: textContentAdded ? tcIndex + 1 : tcIndex,
arguments: tc.arguments,
};
yield {
type: "response.output_item.done",
output_index: tcIndex,
item,
};
finalOutputItem.push(item as unknown as ResponseContentOutput);
}
} else {
continue;
}
} else {
if (!textContentAdded) {
yield {
type: "response.content_part.added",
item_id: outputItemId,
output_index: 0,
content_index: 0,
part: { type: "output_text", text: "", annotations: [] },
};
textContentAdded = true;
}
if (choice.delta.content?.length) {
yield {
type: "response.output_text.delta",
item_id: outputItemId,
output_index: 0,
content_index: 0,
delta: choice.delta.content,
};
textContent += choice.delta.content;
}
if (choice.finish_reason) {
yield {
type: "response.output_text.done",
item_id: outputItemId,
output_index: 0,
content_index: 0,
text: textContent,
};
yield {
type: "response.content_part.done",
item_id: outputItemId,
output_index: 0,
content_index: 0,
part: { type: "output_text", text: textContent, annotations: [] },
};
const item = {
type: "message",
id: outputItemId,
status: "completed",
role: "assistant",
content: [
{ type: "output_text", text: textContent, annotations: [] },
],
};
yield {
type: "response.output_item.done",
output_index: 0,
item,
};
finalOutputItem.push(item as unknown as ResponseContentOutput);
} else {
continue;
}
}
// Construct final response
const finalResponse: ResponseOutput = {
id: responseId,
object: "response" as const,
created_at: initialResponse.created_at || Math.floor(Date.now() / 1000),
status: "completed" as const,
error: null,
incomplete_details: null,
instructions: null,
max_output_tokens: null,
model: chunk.model || input.model,
output: finalOutputItem as unknown as ResponseOutput["output"],
parallel_tool_calls: true,
previous_response_id: input.previous_response_id ?? null,
reasoning: null,
temperature: input.temperature,
text: { format: { type: "text" } },
tool_choice: input.tool_choice ?? "auto",
tools: input.tools ?? [],
top_p: input.top_p,
truncation: input.truncation ?? "disabled",
usage: usage as ResponseOutput["usage"],
user: input.user ?? undefined,
metadata: input.metadata ?? {},
output_text: "",
} as ResponseOutput;
// Store history
const assistantMessage: OpenAI.Chat.Completions.ChatCompletionMessageParam =
{
role: "assistant" as const,
};
if (textContent) {
assistantMessage.content = textContent;
}
// Add tool_calls property if needed
if (toolCalls.size > 0) {
const toolCallsArray = Array.from(toolCalls.values()).map((tc) => ({
id: tc.id,
type: "function" as const,
function: { name: tc.name, arguments: tc.arguments },
}));
// Define a more specific type for the assistant message with tool calls
type AssistantMessageWithToolCalls =
OpenAI.Chat.Completions.ChatCompletionMessageParam & {
tool_calls: Array<{
id: string;
type: "function";
function: {
name: string;
arguments: string;
};
}>;
};
// Use type assertion with the defined type
(assistantMessage as AssistantMessageWithToolCalls).tool_calls =
toolCallsArray;
}
const newHistory = [...fullMessages, assistantMessage];
conversationHistories.set(responseId, {
previous_response_id: input.previous_response_id ?? null,
messages: newHistory,
});
yield { type: "response.completed", response: finalResponse };
}
}
export {
responsesCreateViaChatCompletions,
ResponseCreateInput,
ResponseOutput,
ResponseEvent,
};