Files
llmx/llmx-rs/core/src/chat_completions.rs
Sebastian Krüger 7d2842885a
Some checks failed
ci / build-test (push) Failing after 5m45s
Codespell / Check for spelling errors (push) Successful in 11s
sdk / sdks (push) Failing after 5m2s
rust-release / tag-check (push) Successful in 3s
rust-ci / Lint/Build — ubuntu-24.04 - x86_64-unknown-linux-gnu (push) Has been cancelled
rust-ci / Lint/Build — ubuntu-24.04 - x86_64-unknown-linux-musl (push) Has been cancelled
rust-ci / Lint/Build — ubuntu-24.04-arm - aarch64-unknown-linux-gnu (push) Has been cancelled
rust-ci / Lint/Build — ubuntu-24.04-arm - aarch64-unknown-linux-musl (push) Has been cancelled
rust-ci / Lint/Build — windows-11-arm - aarch64-pc-windows-msvc (push) Has been cancelled
rust-ci / Lint/Build — windows-latest - x86_64-pc-windows-msvc (push) Has been cancelled
rust-ci / Lint/Build — macos-14 - aarch64-apple-darwin (release) (push) Has been cancelled
rust-ci / Lint/Build — ubuntu-24.04 - x86_64-unknown-linux-musl (release) (push) Has been cancelled
rust-ci / Lint/Build — windows-11-arm - aarch64-pc-windows-msvc (release) (push) Has been cancelled
rust-ci / Lint/Build — windows-latest - x86_64-pc-windows-msvc (release) (push) Has been cancelled
rust-ci / Tests — macos-14 - aarch64-apple-darwin (push) Has been cancelled
rust-ci / Detect changed areas (push) Has been cancelled
rust-ci / Format / etc (push) Has been cancelled
rust-ci / cargo shear (push) Has been cancelled
rust-ci / Lint/Build — macos-14 - aarch64-apple-darwin (push) Has been cancelled
rust-ci / Lint/Build — macos-14 - x86_64-apple-darwin (push) Has been cancelled
rust-ci / Tests — ubuntu-24.04 - x86_64-unknown-linux-gnu (push) Has been cancelled
rust-ci / Tests — ubuntu-24.04-arm - aarch64-unknown-linux-gnu (push) Has been cancelled
rust-ci / Tests — windows-11-arm - aarch64-pc-windows-msvc (push) Has been cancelled
rust-ci / Tests — windows-latest - x86_64-pc-windows-msvc (push) Has been cancelled
rust-ci / CI results (required) (push) Has been cancelled
rust-release / Build - macos-15-xlarge - aarch64-apple-darwin (push) Has been cancelled
rust-release / Build - macos-15-xlarge - x86_64-apple-darwin (push) Has been cancelled
rust-release / Build - ubuntu-24.04 - x86_64-unknown-linux-gnu (push) Has been cancelled
rust-release / Build - ubuntu-24.04 - x86_64-unknown-linux-musl (push) Has been cancelled
rust-release / Build - ubuntu-24.04-arm - aarch64-unknown-linux-gnu (push) Has been cancelled
rust-release / Build - ubuntu-24.04-arm - aarch64-unknown-linux-musl (push) Has been cancelled
rust-release / Build - windows-11-arm - aarch64-pc-windows-msvc (push) Has been cancelled
rust-release / Build - windows-latest - x86_64-pc-windows-msvc (push) Has been cancelled
rust-release / release (push) Has been cancelled
rust-release / publish-npm (push) Has been cancelled
chore: Bump version to 0.1.5
- Fix orphaned tool_use error by tracking skip state per call_id
- Handle retries with same call_id correctly
- Add comprehensive debug logging for troubleshooting

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-16 21:08:14 +01:00

1117 lines
46 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
use std::time::Duration;
use crate::ModelProviderInfo;
use crate::client_common::Prompt;
use crate::client_common::ResponseEvent;
use crate::client_common::ResponseStream;
use crate::default_client::LlmxHttpClient;
use crate::error::ConnectionFailedError;
use crate::error::LlmxErr;
use crate::error::ResponseStreamFailed;
use crate::error::Result;
use crate::error::RetryLimitReachedError;
use crate::error::UnexpectedResponseError;
use crate::model_family::ModelFamily;
use crate::tools::spec::create_tools_json_for_chat_completions_api;
use crate::util::backoff;
use bytes::Bytes;
use eventsource_stream::Eventsource;
use futures::Stream;
use futures::StreamExt;
use futures::TryStreamExt;
use llmx_otel::otel_event_manager::OtelEventManager;
use llmx_protocol::models::ContentItem;
use llmx_protocol::models::FunctionCallOutputContentItem;
use llmx_protocol::models::ReasoningItemContent;
use llmx_protocol::models::ResponseItem;
use llmx_protocol::protocol::SessionSource;
use llmx_protocol::protocol::SubAgentSource;
use llmx_protocol::protocol::TokenUsage;
use reqwest::StatusCode;
use serde_json::json;
use std::pin::Pin;
use std::task::Context;
use std::task::Poll;
use tokio::sync::mpsc;
use tokio::time::timeout;
use tracing::debug;
use tracing::trace;
/// Implementation for the classic Chat Completions API.
pub(crate) async fn stream_chat_completions(
prompt: &Prompt,
model_family: &ModelFamily,
client: &LlmxHttpClient,
provider: &ModelProviderInfo,
otel_event_manager: &OtelEventManager,
session_source: &SessionSource,
) -> Result<ResponseStream> {
if prompt.output_schema.is_some() {
return Err(LlmxErr::UnsupportedOperation(
"output_schema is not supported for Chat Completions API".to_string(),
));
}
// Build messages array
let mut messages = Vec::<serde_json::Value>::new();
let full_instructions = prompt.get_full_instructions(model_family);
messages.push(json!({"role": "system", "content": full_instructions}));
let input = prompt.get_formatted_input();
// Pre-scan: map Reasoning blocks to the adjacent assistant anchor after the last user.
// - If the last emitted message is a user message, drop all reasoning.
// - Otherwise, for each Reasoning item after the last user message, attach it
// to the immediate previous assistant message (stop turns) or the immediate
// next assistant anchor (tool-call turns: function/local shell call, or assistant message).
let mut reasoning_by_anchor_index: std::collections::HashMap<usize, String> =
std::collections::HashMap::new();
// Determine the last role that would be emitted to Chat Completions.
let mut last_emitted_role: Option<&str> = None;
for item in &input {
match item {
ResponseItem::Message { role, .. } => last_emitted_role = Some(role.as_str()),
ResponseItem::FunctionCall { .. } | ResponseItem::LocalShellCall { .. } => {
last_emitted_role = Some("assistant")
}
ResponseItem::FunctionCallOutput { .. } => last_emitted_role = Some("tool"),
ResponseItem::Reasoning { .. } | ResponseItem::Other => {}
ResponseItem::CustomToolCall { .. } => {}
ResponseItem::CustomToolCallOutput { .. } => {}
ResponseItem::WebSearchCall { .. } => {}
ResponseItem::GhostSnapshot { .. } => {}
}
}
// Find the last user message index in the input.
let mut last_user_index: Option<usize> = None;
for (idx, item) in input.iter().enumerate() {
if let ResponseItem::Message { role, .. } = item
&& role == "user"
{
last_user_index = Some(idx);
}
}
// Attach reasoning only if the conversation does not end with a user message.
if !matches!(last_emitted_role, Some("user")) {
for (idx, item) in input.iter().enumerate() {
// Only consider reasoning that appears after the last user message.
if let Some(u_idx) = last_user_index
&& idx <= u_idx
{
continue;
}
if let ResponseItem::Reasoning {
content: Some(items),
..
} = item
{
let mut text = String::new();
for entry in items {
match entry {
ReasoningItemContent::ReasoningText { text: segment }
| ReasoningItemContent::Text { text: segment } => text.push_str(segment),
}
}
if text.trim().is_empty() {
continue;
}
// Prefer immediate previous assistant message (stop turns)
let mut attached = false;
if idx > 0
&& let ResponseItem::Message { role, .. } = &input[idx - 1]
&& role == "assistant"
{
reasoning_by_anchor_index
.entry(idx - 1)
.and_modify(|v| v.push_str(&text))
.or_insert(text.clone());
attached = true;
}
// Otherwise, attach to immediate next assistant anchor (tool-calls or assistant message)
if !attached && idx + 1 < input.len() {
match &input[idx + 1] {
ResponseItem::FunctionCall { .. } | ResponseItem::LocalShellCall { .. } => {
reasoning_by_anchor_index
.entry(idx + 1)
.and_modify(|v| v.push_str(&text))
.or_insert(text.clone());
}
ResponseItem::Message { role, .. } if role == "assistant" => {
reasoning_by_anchor_index
.entry(idx + 1)
.and_modify(|v| v.push_str(&text))
.or_insert(text.clone());
}
_ => {}
}
}
}
}
}
// Track last assistant text we emitted to avoid duplicate assistant messages
// in the outbound Chat Completions payload (can happen if a final
// aggregated assistant message was recorded alongside an earlier partial).
let mut last_assistant_text: Option<String> = None;
// Build a map of which call_ids have outputs
// We'll use this to ensure we never send a FunctionCall without its corresponding output
let mut call_ids_with_outputs: std::collections::HashSet<String> = std::collections::HashSet::new();
// First pass: collect all call_ids that have outputs
for item in input.iter() {
if let ResponseItem::FunctionCallOutput { call_id, .. } = item {
call_ids_with_outputs.insert(call_id.clone());
}
}
debug!("=== Chat Completions Request Debug ===");
debug!("Input items count: {}", input.len());
debug!("Call IDs with outputs: {:?}", call_ids_with_outputs);
// Second pass: find the first FunctionCall that doesn't have an output
let mut cutoff_at_idx: Option<usize> = None;
for (idx, item) in input.iter().enumerate() {
if let ResponseItem::FunctionCall { call_id, name, .. } = item {
if !call_ids_with_outputs.contains(call_id) {
debug!("Found unanswered function call '{}' (call_id: {}) at index {}", name, call_id, idx);
cutoff_at_idx = Some(idx);
break;
}
}
}
if let Some(cutoff) = cutoff_at_idx {
debug!("Cutting off at index {} to avoid orphaned tool calls", cutoff);
} else {
debug!("No unanswered function calls found, processing all items");
}
// Track whether the MOST RECENT FunctionCall with each call_id was skipped
// This allows the same call_id to be retried - we only skip outputs for the specific skipped calls
let mut call_id_skip_state: std::collections::HashMap<String, bool> = std::collections::HashMap::new();
for (idx, item) in input.iter().enumerate() {
// Stop processing if we've reached an unanswered function call
if let Some(cutoff) = cutoff_at_idx {
if idx >= cutoff {
debug!("Stopping at index {} due to unanswered function call", idx);
break;
}
}
debug!("Processing item {} of type: {}", idx, match item {
ResponseItem::Message { role, .. } => format!("Message(role={})", role),
ResponseItem::FunctionCall { name, call_id, .. } => format!("FunctionCall(name={}, call_id={})", name, call_id),
ResponseItem::FunctionCallOutput { call_id, .. } => format!("FunctionCallOutput(call_id={})", call_id),
ResponseItem::LocalShellCall { .. } => "LocalShellCall".to_string(),
ResponseItem::CustomToolCall { .. } => "CustomToolCall".to_string(),
ResponseItem::CustomToolCallOutput { .. } => "CustomToolCallOutput".to_string(),
ResponseItem::Reasoning { .. } => "Reasoning".to_string(),
ResponseItem::WebSearchCall { .. } => "WebSearchCall".to_string(),
ResponseItem::GhostSnapshot { .. } => "GhostSnapshot".to_string(),
ResponseItem::Other => "Other".to_string(),
});
match item {
ResponseItem::Message { role, content, .. } => {
// Build content either as a plain string (typical for assistant text)
// or as an array of content items when images are present (user/tool multimodal).
let mut text = String::new();
let mut items: Vec<serde_json::Value> = Vec::new();
let mut saw_image = false;
for c in content {
match c {
ContentItem::InputText { text: t }
| ContentItem::OutputText { text: t } => {
text.push_str(t);
// Only add text content blocks that are non-empty
if !t.trim().is_empty() {
items.push(json!({"type":"text","text": t}));
}
}
ContentItem::InputImage { image_url } => {
saw_image = true;
items.push(json!({"type":"image_url","image_url": {"url": image_url}}));
}
}
}
// Skip messages with empty or whitespace-only text content (unless they contain images)
if text.trim().is_empty() && !saw_image {
continue;
}
// Skip exact-duplicate assistant messages.
if role == "assistant" {
if let Some(prev) = &last_assistant_text
&& prev == &text
{
continue;
}
last_assistant_text = Some(text.clone());
}
// For assistant messages, always send a plain string for compatibility.
// For user messages, if an image is present, send an array of content items.
let content_value = if role == "assistant" {
json!(text)
} else if saw_image {
json!(items)
} else {
json!(text)
};
let mut msg = json!({"role": role, "content": content_value});
if role == "assistant"
&& let Some(reasoning) = reasoning_by_anchor_index.get(&idx)
&& let Some(obj) = msg.as_object_mut()
{
obj.insert("reasoning".to_string(), json!(reasoning));
}
messages.push(msg);
}
ResponseItem::FunctionCall {
name,
arguments,
call_id,
..
} => {
// Validate that arguments is valid JSON before sending to API
// If invalid, skip this function call to avoid API errors
if serde_json::from_str::<serde_json::Value>(arguments).is_err() {
debug!("Skipping malformed function call with invalid JSON arguments: {}", arguments);
// Mark this call_id's most recent state as skipped
call_id_skip_state.insert(call_id.clone(), true);
continue;
}
// Mark this call_id's most recent state as NOT skipped (valid call)
call_id_skip_state.insert(call_id.clone(), false);
let mut msg = json!({
"role": "assistant",
"content": null,
"tool_calls": [{
"id": call_id,
"type": "function",
"function": {
"name": name,
"arguments": arguments,
}
}]
});
if let Some(reasoning) = reasoning_by_anchor_index.get(&idx)
&& let Some(obj) = msg.as_object_mut()
{
obj.insert("reasoning".to_string(), json!(reasoning));
}
messages.push(msg);
}
ResponseItem::LocalShellCall {
id,
call_id: _,
status,
action,
} => {
// Confirm with API team.
let mut msg = json!({
"role": "assistant",
"content": null,
"tool_calls": [{
"id": id.clone().unwrap_or_else(|| "".to_string()),
"type": "local_shell_call",
"status": status,
"action": action,
}]
});
if let Some(reasoning) = reasoning_by_anchor_index.get(&idx)
&& let Some(obj) = msg.as_object_mut()
{
obj.insert("reasoning".to_string(), json!(reasoning));
}
messages.push(msg);
}
ResponseItem::FunctionCallOutput { call_id, output } => {
// Skip outputs only if the MOST RECENT FunctionCall with this call_id was skipped
if call_id_skip_state.get(call_id) == Some(&true) {
debug!("Skipping function call output for most recent skipped call_id: {}", call_id);
continue;
}
// Prefer structured content items when available (e.g., images)
// otherwise fall back to the legacy plain-string content.
let content_value = if let Some(items) = &output.content_items {
let mapped: Vec<serde_json::Value> = items
.iter()
.map(|it| match it {
FunctionCallOutputContentItem::InputText { text } => {
json!({"type":"text","text": text})
}
FunctionCallOutputContentItem::InputImage { image_url } => {
json!({"type":"image_url","image_url": {"url": image_url}})
}
})
.collect();
json!(mapped)
} else {
json!(output.content)
};
messages.push(json!({
"role": "tool",
"tool_call_id": call_id,
"content": content_value,
}));
}
ResponseItem::CustomToolCall {
id,
call_id: _,
name,
input,
status: _,
} => {
messages.push(json!({
"role": "assistant",
"content": null,
"tool_calls": [{
"id": id,
"type": "custom",
"custom": {
"name": name,
"input": input,
}
}]
}));
}
ResponseItem::CustomToolCallOutput { call_id, output } => {
messages.push(json!({
"role": "tool",
"tool_call_id": call_id,
"content": output,
}));
}
ResponseItem::GhostSnapshot { .. } => {
// Ghost snapshots annotate history but are not sent to the model.
continue;
}
ResponseItem::Reasoning { .. }
| ResponseItem::WebSearchCall { .. }
| ResponseItem::Other => {
// Omit these items from the conversation history.
continue;
}
}
}
debug!("Built {} messages for API request", messages.len());
debug!("=== End Chat Completions Request Debug ===");
let tools_json = create_tools_json_for_chat_completions_api(&prompt.tools)?;
let mut payload = json!({
"model": model_family.slug,
"messages": messages,
"stream": true,
"tools": tools_json,
});
// Add max_tokens - required by Anthropic Messages API
// Use a sensible default of 8192 if not configured
if let Some(obj) = payload.as_object_mut() {
obj.insert("max_tokens".to_string(), json!(8192));
}
debug!(
"POST to {}: {}",
provider.get_full_url(&None),
serde_json::to_string_pretty(&payload).unwrap_or_default()
);
let mut attempt = 0;
let max_retries = provider.request_max_retries();
loop {
attempt += 1;
let mut req_builder = provider.create_request_builder(client, &None).await?;
// Include subagent header only for subagent sessions.
if let SessionSource::SubAgent(sub) = session_source.clone() {
let subagent = if let SubAgentSource::Other(label) = sub {
label
} else {
serde_json::to_value(&sub)
.ok()
.and_then(|v| v.as_str().map(std::string::ToString::to_string))
.unwrap_or_else(|| "other".to_string())
};
req_builder = req_builder.header("x-openai-subagent", subagent);
}
let res = otel_event_manager
.log_request(attempt, || {
req_builder
.header(reqwest::header::ACCEPT, "text/event-stream")
.json(&payload)
.send()
})
.await;
match res {
Ok(resp) if resp.status().is_success() => {
let (tx_event, rx_event) = mpsc::channel::<Result<ResponseEvent>>(1600);
let stream = resp.bytes_stream().map_err(|e| {
LlmxErr::ResponseStreamFailed(ResponseStreamFailed {
source: e,
request_id: None,
})
});
tokio::spawn(process_chat_sse(
stream,
tx_event,
provider.stream_idle_timeout(),
otel_event_manager.clone(),
));
return Ok(ResponseStream { rx_event });
}
Ok(res) => {
let status = res.status();
if !(status == StatusCode::TOO_MANY_REQUESTS || status.is_server_error()) {
let body = (res.text().await).unwrap_or_default();
return Err(LlmxErr::UnexpectedStatus(UnexpectedResponseError {
status,
body,
request_id: None,
}));
}
if attempt > max_retries {
return Err(LlmxErr::RetryLimit(RetryLimitReachedError {
status,
request_id: None,
}));
}
let retry_after_secs = res
.headers()
.get(reqwest::header::RETRY_AFTER)
.and_then(|v| v.to_str().ok())
.and_then(|s| s.parse::<u64>().ok());
let delay = retry_after_secs
.map(|s| Duration::from_millis(s * 1_000))
.unwrap_or_else(|| backoff(attempt));
tokio::time::sleep(delay).await;
}
Err(e) => {
if attempt > max_retries {
return Err(LlmxErr::ConnectionFailed(ConnectionFailedError {
source: e,
}));
}
let delay = backoff(attempt);
tokio::time::sleep(delay).await;
}
}
}
}
async fn append_assistant_text(
tx_event: &mpsc::Sender<Result<ResponseEvent>>,
assistant_item: &mut Option<ResponseItem>,
text: String,
) {
if assistant_item.is_none() {
let item = ResponseItem::Message {
id: None,
role: "assistant".to_string(),
content: vec![],
};
*assistant_item = Some(item.clone());
let _ = tx_event
.send(Ok(ResponseEvent::OutputItemAdded(item)))
.await;
}
if let Some(ResponseItem::Message { content, .. }) = assistant_item {
content.push(ContentItem::OutputText { text: text.clone() });
let _ = tx_event
.send(Ok(ResponseEvent::OutputTextDelta(text.clone())))
.await;
}
}
async fn append_reasoning_text(
tx_event: &mpsc::Sender<Result<ResponseEvent>>,
reasoning_item: &mut Option<ResponseItem>,
text: String,
) {
if reasoning_item.is_none() {
let item = ResponseItem::Reasoning {
id: String::new(),
summary: Vec::new(),
content: Some(vec![]),
encrypted_content: None,
};
*reasoning_item = Some(item.clone());
let _ = tx_event
.send(Ok(ResponseEvent::OutputItemAdded(item)))
.await;
}
if let Some(ResponseItem::Reasoning {
content: Some(content),
..
}) = reasoning_item
{
content.push(ReasoningItemContent::ReasoningText { text: text.clone() });
let _ = tx_event
.send(Ok(ResponseEvent::ReasoningContentDelta(text.clone())))
.await;
}
}
/// Lightweight SSE processor for the Chat Completions streaming format. The
/// output is mapped onto Llmx's internal [`ResponseEvent`] so that the rest
/// of the pipeline can stay agnostic of the underlying wire format.
async fn process_chat_sse<S>(
stream: S,
tx_event: mpsc::Sender<Result<ResponseEvent>>,
idle_timeout: Duration,
otel_event_manager: OtelEventManager,
) where
S: Stream<Item = Result<Bytes>> + Unpin,
{
let mut stream = stream.eventsource();
// State to accumulate a function call across streaming chunks.
// OpenAI may split the `arguments` string over multiple `delta` events
// until the chunk whose `finish_reason` is `tool_calls` is emitted. We
// keep collecting the pieces here and forward a single
// `ResponseItem::FunctionCall` once the call is complete.
#[derive(Default)]
struct FunctionCallState {
name: Option<String>,
arguments: String,
call_id: Option<String>,
active: bool,
}
let mut fn_call_state = FunctionCallState::default();
let mut assistant_item: Option<ResponseItem> = None;
let mut reasoning_item: Option<ResponseItem> = None;
let mut token_usage: Option<TokenUsage> = None;
loop {
let start = std::time::Instant::now();
let response = timeout(idle_timeout, stream.next()).await;
let duration = start.elapsed();
otel_event_manager.log_sse_event(&response, duration);
let sse = match response {
Ok(Some(Ok(ev))) => ev,
Ok(Some(Err(e))) => {
let _ = tx_event
.send(Err(LlmxErr::Stream(e.to_string(), None)))
.await;
return;
}
Ok(None) => {
// Stream closed gracefully emit Completed with dummy id.
let _ = tx_event
.send(Ok(ResponseEvent::Completed {
response_id: String::new(),
token_usage: token_usage.clone(),
}))
.await;
return;
}
Err(_) => {
let _ = tx_event
.send(Err(LlmxErr::Stream(
"idle timeout waiting for SSE".into(),
None,
)))
.await;
return;
}
};
// OpenAI Chat streaming sends a literal string "[DONE]" when finished.
if sse.data.trim() == "[DONE]" {
// Emit any finalized items before closing so downstream consumers receive
// terminal events for both assistant content and raw reasoning.
if let Some(item) = assistant_item {
let _ = tx_event.send(Ok(ResponseEvent::OutputItemDone(item))).await;
}
if let Some(item) = reasoning_item {
let _ = tx_event.send(Ok(ResponseEvent::OutputItemDone(item))).await;
}
let _ = tx_event
.send(Ok(ResponseEvent::Completed {
response_id: String::new(),
token_usage: token_usage.clone(),
}))
.await;
return;
}
// Parse JSON chunk
let chunk: serde_json::Value = match serde_json::from_str(&sse.data) {
Ok(v) => v,
Err(_) => continue,
};
trace!("chat_completions received SSE chunk: {chunk:?}");
// Parse usage data if present (typically comes before [DONE])
if let Some(usage_obj) = chunk.get("usage")
&& let (Some(prompt_tokens), Some(completion_tokens), Some(total_tokens)) = (
usage_obj
.get("prompt_tokens")
.and_then(serde_json::Value::as_i64),
usage_obj
.get("completion_tokens")
.and_then(serde_json::Value::as_i64),
usage_obj
.get("total_tokens")
.and_then(serde_json::Value::as_i64),
)
{
// Extract cached_tokens from prompt_tokens_details if present
let cached_tokens = usage_obj
.get("prompt_tokens_details")
.and_then(|d| d.get("cached_tokens"))
.and_then(serde_json::Value::as_i64)
.unwrap_or(0);
// Extract reasoning_tokens from completion_tokens_details if present
let reasoning_tokens = usage_obj
.get("completion_tokens_details")
.and_then(|d| d.get("reasoning_tokens"))
.and_then(serde_json::Value::as_i64)
.unwrap_or(0);
token_usage = Some(TokenUsage {
input_tokens: prompt_tokens,
cached_input_tokens: cached_tokens,
output_tokens: completion_tokens,
reasoning_output_tokens: reasoning_tokens,
total_tokens,
});
}
// Check for error chunks (e.g., { "error": { "message": "...", "type": "...", "code": "..." } })
if let Some(error_obj) = chunk.get("error") {
let error_message = error_obj
.get("message")
.and_then(|m| m.as_str())
.unwrap_or("Unknown error");
// Send error through Result and stop processing
let _ = tx_event
.send(Err(LlmxErr::UnexpectedStatus(UnexpectedResponseError {
status: StatusCode::OK, // Stream errors come with 200 status
body: error_message.to_string(),
request_id: None,
})))
.await;
break;
}
let choice_opt = chunk.get("choices").and_then(|c| c.get(0));
if let Some(choice) = choice_opt {
// Handle assistant content tokens as streaming deltas.
if let Some(content) = choice
.get("delta")
.and_then(|d| d.get("content"))
.and_then(|c| c.as_str())
&& !content.is_empty()
{
append_assistant_text(&tx_event, &mut assistant_item, content.to_string()).await;
}
// Forward any reasoning/thinking deltas if present.
// Some providers stream `reasoning` as a plain string while others
// nest the text under an object (e.g. `{ "reasoning": { "text": "…" } }`).
if let Some(reasoning_val) = choice.get("delta").and_then(|d| d.get("reasoning")) {
let mut maybe_text = reasoning_val
.as_str()
.map(str::to_string)
.filter(|s| !s.is_empty());
if maybe_text.is_none() && reasoning_val.is_object() {
if let Some(s) = reasoning_val
.get("text")
.and_then(|t| t.as_str())
.filter(|s| !s.is_empty())
{
maybe_text = Some(s.to_string());
} else if let Some(s) = reasoning_val
.get("content")
.and_then(|t| t.as_str())
.filter(|s| !s.is_empty())
{
maybe_text = Some(s.to_string());
}
}
if let Some(reasoning) = maybe_text {
// Accumulate so we can emit a terminal Reasoning item at the end.
append_reasoning_text(&tx_event, &mut reasoning_item, reasoning).await;
}
}
// Some providers only include reasoning on the final message object.
if let Some(message_reasoning) = choice.get("message").and_then(|m| m.get("reasoning"))
{
// Accept either a plain string or an object with { text | content }
if let Some(s) = message_reasoning.as_str() {
if !s.is_empty() {
append_reasoning_text(&tx_event, &mut reasoning_item, s.to_string()).await;
}
} else if let Some(obj) = message_reasoning.as_object()
&& let Some(s) = obj
.get("text")
.and_then(|v| v.as_str())
.or_else(|| obj.get("content").and_then(|v| v.as_str()))
&& !s.is_empty()
{
append_reasoning_text(&tx_event, &mut reasoning_item, s.to_string()).await;
}
}
// Handle streaming function / tool calls.
if let Some(tool_calls) = choice
.get("delta")
.and_then(|d| d.get("tool_calls"))
.and_then(|tc| tc.as_array())
&& let Some(tool_call) = tool_calls.first()
{
// Mark that we have an active function call in progress.
fn_call_state.active = true;
// Extract call_id if present.
if let Some(id) = tool_call.get("id").and_then(|v| v.as_str()) {
fn_call_state.call_id.get_or_insert_with(|| id.to_string());
}
// Extract function details if present.
if let Some(function) = tool_call.get("function") {
if let Some(name) = function.get("name").and_then(|n| n.as_str()) {
fn_call_state.name.get_or_insert_with(|| name.to_string());
}
if let Some(args_fragment) = function.get("arguments").and_then(|a| a.as_str())
{
fn_call_state.arguments.push_str(args_fragment);
}
}
}
// Emit end-of-turn when finish_reason signals completion.
if let Some(finish_reason) = choice.get("finish_reason").and_then(|v| v.as_str()) {
match finish_reason {
"tool_calls" if fn_call_state.active => {
// First, flush the terminal raw reasoning so UIs can finalize
// the reasoning stream before any exec/tool events begin.
if let Some(item) = reasoning_item.take() {
let _ = tx_event.send(Ok(ResponseEvent::OutputItemDone(item))).await;
}
// Then emit the FunctionCall response item.
let item = ResponseItem::FunctionCall {
id: None,
name: fn_call_state.name.clone().unwrap_or_else(|| "".to_string()),
arguments: fn_call_state.arguments.clone(),
call_id: fn_call_state.call_id.clone().unwrap_or_else(String::new),
};
let _ = tx_event.send(Ok(ResponseEvent::OutputItemDone(item))).await;
}
"stop" => {
// Regular turn without tool-call. Emit the final assistant message
// as a single OutputItemDone so non-delta consumers see the result.
if let Some(item) = assistant_item.take() {
let _ = tx_event.send(Ok(ResponseEvent::OutputItemDone(item))).await;
}
// Also emit a terminal Reasoning item so UIs can finalize raw reasoning.
if let Some(item) = reasoning_item.take() {
let _ = tx_event.send(Ok(ResponseEvent::OutputItemDone(item))).await;
}
}
_ => {}
}
// Emit Completed regardless of reason so the agent can advance.
let _ = tx_event
.send(Ok(ResponseEvent::Completed {
response_id: String::new(),
token_usage: token_usage.clone(),
}))
.await;
// Prepare for potential next turn (should not happen in same stream).
// fn_call_state = FunctionCallState::default();
return; // End processing for this SSE stream.
}
}
}
}
/// Optional client-side aggregation helper
///
/// Stream adapter that merges the incremental `OutputItemDone` chunks coming from
/// [`process_chat_sse`] into a *running* assistant message, **suppressing the
/// per-token deltas**. The stream stays silent while the model is thinking
/// and only emits two events per turn:
///
/// 1. `ResponseEvent::OutputItemDone` with the *complete* assistant message
/// (fully concatenated).
/// 2. The original `ResponseEvent::Completed` right after it.
///
/// This mirrors the behaviour the TypeScript CLI exposes to its higher layers.
///
/// The adapter is intentionally *lossless*: callers who do **not** opt in via
/// [`AggregateStreamExt::aggregate()`] keep receiving the original unmodified
/// events.
#[derive(Copy, Clone, Eq, PartialEq)]
enum AggregateMode {
AggregatedOnly,
Streaming,
}
pub(crate) struct AggregatedChatStream<S> {
inner: S,
cumulative: String,
cumulative_reasoning: String,
pending: std::collections::VecDeque<ResponseEvent>,
mode: AggregateMode,
}
impl<S> Stream for AggregatedChatStream<S>
where
S: Stream<Item = Result<ResponseEvent>> + Unpin,
{
type Item = Result<ResponseEvent>;
fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
let this = self.get_mut();
// First, flush any buffered events from the previous call.
if let Some(ev) = this.pending.pop_front() {
return Poll::Ready(Some(Ok(ev)));
}
loop {
match Pin::new(&mut this.inner).poll_next(cx) {
Poll::Pending => return Poll::Pending,
Poll::Ready(None) => return Poll::Ready(None),
Poll::Ready(Some(Err(e))) => return Poll::Ready(Some(Err(e))),
Poll::Ready(Some(Ok(ResponseEvent::OutputItemDone(item)))) => {
// If this is an incremental assistant message chunk, accumulate but
// do NOT emit yet. Forward any other item (e.g. FunctionCall) right
// away so downstream consumers see it.
let is_assistant_message = matches!(
&item,
llmx_protocol::models::ResponseItem::Message { role, .. } if role == "assistant"
);
if is_assistant_message {
match this.mode {
AggregateMode::AggregatedOnly => {
// Only use the final assistant message if we have not
// seen any deltas; otherwise, deltas already built the
// cumulative text and this would duplicate it.
if this.cumulative.is_empty()
&& let llmx_protocol::models::ResponseItem::Message {
content,
..
} = &item
&& let Some(text) = content.iter().find_map(|c| match c {
llmx_protocol::models::ContentItem::OutputText { text } => {
Some(text)
}
_ => None,
})
{
this.cumulative.push_str(text);
}
// Swallow assistant message here; emit on Completed.
continue;
}
AggregateMode::Streaming => {
// In streaming mode, if we have not seen any deltas, forward
// the final assistant message directly. If deltas were seen,
// suppress the final message to avoid duplication.
if this.cumulative.is_empty() {
return Poll::Ready(Some(Ok(ResponseEvent::OutputItemDone(
item,
))));
} else {
continue;
}
}
}
}
// Not an assistant message forward immediately.
return Poll::Ready(Some(Ok(ResponseEvent::OutputItemDone(item))));
}
Poll::Ready(Some(Ok(ResponseEvent::RateLimits(snapshot)))) => {
return Poll::Ready(Some(Ok(ResponseEvent::RateLimits(snapshot))));
}
Poll::Ready(Some(Ok(ResponseEvent::Completed {
response_id,
token_usage,
}))) => {
// Build any aggregated items in the correct order: Reasoning first, then Message.
let mut emitted_any = false;
if !this.cumulative_reasoning.is_empty()
&& matches!(this.mode, AggregateMode::AggregatedOnly)
{
let aggregated_reasoning = llmx_protocol::models::ResponseItem::Reasoning {
id: String::new(),
summary: Vec::new(),
content: Some(vec![
llmx_protocol::models::ReasoningItemContent::ReasoningText {
text: std::mem::take(&mut this.cumulative_reasoning),
},
]),
encrypted_content: None,
};
this.pending
.push_back(ResponseEvent::OutputItemDone(aggregated_reasoning));
emitted_any = true;
}
// Always emit the final aggregated assistant message when any
// content deltas have been observed. In AggregatedOnly mode this
// is the sole assistant output; in Streaming mode this finalizes
// the streamed deltas into a terminal OutputItemDone so callers
// can persist/render the message once per turn.
if !this.cumulative.is_empty() {
let aggregated_message = llmx_protocol::models::ResponseItem::Message {
id: None,
role: "assistant".to_string(),
content: vec![llmx_protocol::models::ContentItem::OutputText {
text: std::mem::take(&mut this.cumulative),
}],
};
this.pending
.push_back(ResponseEvent::OutputItemDone(aggregated_message));
emitted_any = true;
}
// Always emit Completed last when anything was aggregated.
if emitted_any {
this.pending.push_back(ResponseEvent::Completed {
response_id: response_id.clone(),
token_usage: token_usage.clone(),
});
// Return the first pending event now.
if let Some(ev) = this.pending.pop_front() {
return Poll::Ready(Some(Ok(ev)));
}
}
// Nothing aggregated forward Completed directly.
return Poll::Ready(Some(Ok(ResponseEvent::Completed {
response_id,
token_usage,
})));
}
Poll::Ready(Some(Ok(ResponseEvent::Created))) => {
// These events are exclusive to the Responses API and
// will never appear in a Chat Completions stream.
continue;
}
Poll::Ready(Some(Ok(ResponseEvent::OutputTextDelta(delta)))) => {
// Always accumulate deltas so we can emit a final OutputItemDone at Completed.
this.cumulative.push_str(&delta);
if matches!(this.mode, AggregateMode::Streaming) {
// In streaming mode, also forward the delta immediately.
return Poll::Ready(Some(Ok(ResponseEvent::OutputTextDelta(delta))));
} else {
continue;
}
}
Poll::Ready(Some(Ok(ResponseEvent::ReasoningContentDelta(delta)))) => {
// Always accumulate reasoning deltas so we can emit a final Reasoning item at Completed.
this.cumulative_reasoning.push_str(&delta);
if matches!(this.mode, AggregateMode::Streaming) {
// In streaming mode, also forward the delta immediately.
return Poll::Ready(Some(Ok(ResponseEvent::ReasoningContentDelta(delta))));
} else {
continue;
}
}
Poll::Ready(Some(Ok(ResponseEvent::ReasoningSummaryDelta(_)))) => {
continue;
}
Poll::Ready(Some(Ok(ResponseEvent::ReasoningSummaryPartAdded))) => {
continue;
}
Poll::Ready(Some(Ok(ResponseEvent::OutputItemAdded(item)))) => {
return Poll::Ready(Some(Ok(ResponseEvent::OutputItemAdded(item))));
}
}
}
}
}
/// Extension trait that activates aggregation on any stream of [`ResponseEvent`].
pub(crate) trait AggregateStreamExt: Stream<Item = Result<ResponseEvent>> + Sized {
/// Returns a new stream that emits **only** the final assistant message
/// per turn instead of every incremental delta. The produced
/// `ResponseEvent` sequence for a typical text turn looks like:
///
/// ```ignore
/// OutputItemDone(<full message>)
/// Completed
/// ```
///
/// No other `OutputItemDone` events will be seen by the caller.
///
/// Usage:
///
/// ```ignore
/// let agg_stream = client.stream(&prompt).await?.aggregate();
/// while let Some(event) = agg_stream.next().await {
/// // event now contains cumulative text
/// }
/// ```
fn aggregate(self) -> AggregatedChatStream<Self> {
AggregatedChatStream::new(self, AggregateMode::AggregatedOnly)
}
}
impl<T> AggregateStreamExt for T where T: Stream<Item = Result<ResponseEvent>> + Sized {}
impl<S> AggregatedChatStream<S> {
fn new(inner: S, mode: AggregateMode) -> Self {
AggregatedChatStream {
inner,
cumulative: String::new(),
cumulative_reasoning: String::new(),
pending: std::collections::VecDeque::new(),
mode,
}
}
pub(crate) fn streaming_mode(inner: S) -> Self {
Self::new(inner, AggregateMode::Streaming)
}
}