Files
llmx/codex-rs/core/src/exec.rs
Michael Bolin 93817643ee chore: refactor exec() into spawn_child() and consume_truncated_output() (#878)
This PR is a straight refactor so that creating the `Child` process for
an `shell` tool call and consuming its output can be separate concerns.
For the actual tool call, we will always apply
`consume_truncated_output()`, but for the top-level debug commands in
the CLI (e.g., `debug seatbelt` and `debug landlock`), we only want to
use the `spawn_child()` part of `exec()`.

We want the subcommands to match the `shell` tool call usage as
faithfully as possible. This becomes more important when we introduce a
new parameter to `spawn_child()` in
https://github.com/openai/codex/pull/879.

---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/878).
* #879
* __->__ #878
2025-05-09 11:03:58 -07:00

368 lines
11 KiB
Rust

use std::io;
#[cfg(target_family = "unix")]
use std::os::unix::process::ExitStatusExt;
use std::path::Path;
use std::path::PathBuf;
use std::process::ExitStatus;
use std::process::Stdio;
use std::sync::Arc;
use std::time::Duration;
use std::time::Instant;
use tokio::io::AsyncRead;
use tokio::io::AsyncReadExt;
use tokio::io::BufReader;
use tokio::process::Child;
use tokio::process::Command;
use tokio::sync::Notify;
use crate::error::CodexErr;
use crate::error::Result;
use crate::error::SandboxErr;
use crate::protocol::SandboxPolicy;
// Maximum we send for each stream, which is either:
// - 10KiB OR
// - 256 lines
const MAX_STREAM_OUTPUT: usize = 10 * 1024;
const MAX_STREAM_OUTPUT_LINES: usize = 256;
const DEFAULT_TIMEOUT_MS: u64 = 10_000;
// Hardcode these since it does not seem worth including the libc crate just
// for these.
const SIGKILL_CODE: i32 = 9;
const TIMEOUT_CODE: i32 = 64;
const MACOS_SEATBELT_BASE_POLICY: &str = include_str!("seatbelt_base_policy.sbpl");
/// When working with `sandbox-exec`, only consider `sandbox-exec` in `/usr/bin`
/// to defend against an attacker trying to inject a malicious version on the
/// PATH. If /usr/bin/sandbox-exec has been tampered with, then the attacker
/// already has root access.
const MACOS_PATH_TO_SEATBELT_EXECUTABLE: &str = "/usr/bin/sandbox-exec";
#[derive(Debug, Clone)]
pub struct ExecParams {
pub command: Vec<String>,
pub cwd: PathBuf,
pub timeout_ms: Option<u64>,
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum SandboxType {
None,
/// Only available on macOS.
MacosSeatbelt,
/// Only available on Linux.
LinuxSeccomp,
}
#[cfg(target_os = "linux")]
async fn exec_linux(
params: ExecParams,
ctrl_c: Arc<Notify>,
sandbox_policy: &SandboxPolicy,
) -> Result<RawExecToolCallOutput> {
crate::linux::exec_linux(params, ctrl_c, sandbox_policy).await
}
#[cfg(not(target_os = "linux"))]
async fn exec_linux(
_params: ExecParams,
_ctrl_c: Arc<Notify>,
_sandbox_policy: &SandboxPolicy,
) -> Result<RawExecToolCallOutput> {
Err(CodexErr::Io(io::Error::new(
io::ErrorKind::InvalidInput,
"linux sandbox is not supported on this platform",
)))
}
pub async fn process_exec_tool_call(
params: ExecParams,
sandbox_type: SandboxType,
ctrl_c: Arc<Notify>,
sandbox_policy: &SandboxPolicy,
) -> Result<ExecToolCallOutput> {
let start = Instant::now();
let raw_output_result = match sandbox_type {
SandboxType::None => exec(params, ctrl_c).await,
SandboxType::MacosSeatbelt => {
let ExecParams {
command,
cwd,
timeout_ms,
} = params;
let seatbelt_command = create_seatbelt_command(command, sandbox_policy, &cwd);
exec(
ExecParams {
command: seatbelt_command,
cwd,
timeout_ms,
},
ctrl_c,
)
.await
}
SandboxType::LinuxSeccomp => exec_linux(params, ctrl_c, sandbox_policy).await,
};
let duration = start.elapsed();
match raw_output_result {
Ok(raw_output) => {
let stdout = String::from_utf8_lossy(&raw_output.stdout).to_string();
let stderr = String::from_utf8_lossy(&raw_output.stderr).to_string();
#[cfg(target_family = "unix")]
match raw_output.exit_status.signal() {
Some(TIMEOUT_CODE) => return Err(CodexErr::Sandbox(SandboxErr::Timeout)),
Some(signal) => {
return Err(CodexErr::Sandbox(SandboxErr::Signal(signal)));
}
None => {}
}
let exit_code = raw_output.exit_status.code().unwrap_or(-1);
// NOTE(ragona): This is much less restrictive than the previous check. If we exec
// a command, and it returns anything other than success, we assume that it may have
// been a sandboxing error and allow the user to retry. (The user of course may choose
// not to retry, or in a non-interactive mode, would automatically reject the approval.)
if exit_code != 0 && sandbox_type != SandboxType::None {
return Err(CodexErr::Sandbox(SandboxErr::Denied(
exit_code, stdout, stderr,
)));
}
Ok(ExecToolCallOutput {
exit_code,
stdout,
stderr,
duration,
})
}
Err(err) => {
tracing::error!("exec error: {err}");
Err(err)
}
}
}
pub fn create_seatbelt_command(
command: Vec<String>,
sandbox_policy: &SandboxPolicy,
cwd: &Path,
) -> Vec<String> {
let (file_write_policy, extra_cli_args) = {
if sandbox_policy.has_full_disk_write_access() {
// Allegedly, this is more permissive than `(allow file-write*)`.
(
r#"(allow file-write* (regex #"^/"))"#.to_string(),
Vec::<String>::new(),
)
} else {
let writable_roots = sandbox_policy.get_writable_roots_with_cwd(cwd);
let (writable_folder_policies, cli_args): (Vec<String>, Vec<String>) = writable_roots
.iter()
.enumerate()
.map(|(index, root)| {
let param_name = format!("WRITABLE_ROOT_{index}");
let policy: String = format!("(subpath (param \"{param_name}\"))");
let cli_arg = format!("-D{param_name}={}", root.to_string_lossy());
(policy, cli_arg)
})
.unzip();
if writable_folder_policies.is_empty() {
("".to_string(), Vec::<String>::new())
} else {
let file_write_policy = format!(
"(allow file-write*\n{}\n)",
writable_folder_policies.join(" ")
);
(file_write_policy, cli_args)
}
}
};
let file_read_policy = if sandbox_policy.has_full_disk_read_access() {
"; allow read-only file operations\n(allow file-read*)"
} else {
""
};
// TODO(mbolin): apply_patch calls must also honor the SandboxPolicy.
let network_policy = if sandbox_policy.has_full_network_access() {
"(allow network-outbound)\n(allow network-inbound)\n(allow system-socket)"
} else {
""
};
let full_policy = format!(
"{MACOS_SEATBELT_BASE_POLICY}\n{file_read_policy}\n{file_write_policy}\n{network_policy}"
);
let mut seatbelt_command: Vec<String> = vec![
MACOS_PATH_TO_SEATBELT_EXECUTABLE.to_string(),
"-p".to_string(),
full_policy,
];
seatbelt_command.extend(extra_cli_args);
seatbelt_command.push("--".to_string());
seatbelt_command.extend(command);
seatbelt_command
}
#[derive(Debug)]
pub struct RawExecToolCallOutput {
pub exit_status: ExitStatus,
pub stdout: Vec<u8>,
pub stderr: Vec<u8>,
}
#[derive(Debug)]
pub struct ExecToolCallOutput {
pub exit_code: i32,
pub stdout: String,
pub stderr: String,
pub duration: Duration,
}
pub async fn exec(
ExecParams {
command,
cwd,
timeout_ms,
}: ExecParams,
ctrl_c: Arc<Notify>,
) -> Result<RawExecToolCallOutput> {
let child = spawn_child(command, cwd).await?;
consume_truncated_output(child, ctrl_c, timeout_ms).await
}
/// Spawns the appropriate child process for the ExecParams.
async fn spawn_child(command: Vec<String>, cwd: PathBuf) -> std::io::Result<Child> {
if command.is_empty() {
return Err(std::io::Error::new(
io::ErrorKind::InvalidInput,
"command args are empty",
));
}
let mut cmd = Command::new(&command[0]);
cmd.args(&command[1..]);
cmd.current_dir(cwd);
// Do not create a file descriptor for stdin because otherwise some
// commands may hang forever waiting for input. For example, ripgrep has
// a heuristic where it may try to read from stdin as explained here:
// https://github.com/BurntSushi/ripgrep/blob/e2362d4d5185d02fa857bf381e7bd52e66fafc73/crates/core/flags/hiargs.rs#L1101-L1103
cmd.stdin(Stdio::null());
cmd.stdout(Stdio::piped())
.stderr(Stdio::piped())
.kill_on_drop(true)
.spawn()
}
/// Consumes the output of a child process, truncating it so it is suitable for
/// use as the output of a `shell` tool call. Also enforces specified timeout.
async fn consume_truncated_output(
mut child: Child,
ctrl_c: Arc<Notify>,
timeout_ms: Option<u64>,
) -> Result<RawExecToolCallOutput> {
let stdout_handle = tokio::spawn(read_capped(
BufReader::new(child.stdout.take().expect("stdout is not piped")),
MAX_STREAM_OUTPUT,
MAX_STREAM_OUTPUT_LINES,
));
let stderr_handle = tokio::spawn(read_capped(
BufReader::new(child.stderr.take().expect("stderr is not piped")),
MAX_STREAM_OUTPUT,
MAX_STREAM_OUTPUT_LINES,
));
let interrupted = ctrl_c.notified();
let timeout = Duration::from_millis(timeout_ms.unwrap_or(DEFAULT_TIMEOUT_MS));
let exit_status = tokio::select! {
result = tokio::time::timeout(timeout, child.wait()) => {
match result {
Ok(Ok(exit_status)) => exit_status,
Ok(e) => e?,
Err(_) => {
// timeout
child.start_kill()?;
// Debatable whether `child.wait().await` should be called here.
synthetic_exit_status(128 + TIMEOUT_CODE)
}
}
}
_ = interrupted => {
child.start_kill()?;
synthetic_exit_status(128 + SIGKILL_CODE)
}
};
let stdout = stdout_handle.await??;
let stderr = stderr_handle.await??;
Ok(RawExecToolCallOutput {
exit_status,
stdout,
stderr,
})
}
async fn read_capped<R: AsyncRead + Unpin>(
mut reader: R,
max_output: usize,
max_lines: usize,
) -> io::Result<Vec<u8>> {
let mut buf = Vec::with_capacity(max_output.min(8 * 1024));
let mut tmp = [0u8; 8192];
let mut remaining_bytes = max_output;
let mut remaining_lines = max_lines;
loop {
let n = reader.read(&mut tmp).await?;
if n == 0 {
break;
}
// Copy into the buffer only while we still have byte and line budget.
if remaining_bytes > 0 && remaining_lines > 0 {
let mut copy_len = 0;
for &b in &tmp[..n] {
if remaining_bytes == 0 || remaining_lines == 0 {
break;
}
copy_len += 1;
remaining_bytes -= 1;
if b == b'\n' {
remaining_lines -= 1;
}
}
buf.extend_from_slice(&tmp[..copy_len]);
}
// Continue reading to EOF to avoid back-pressure, but discard once caps are hit.
}
Ok(buf)
}
#[cfg(unix)]
fn synthetic_exit_status(code: i32) -> ExitStatus {
use std::os::unix::process::ExitStatusExt;
std::process::ExitStatus::from_raw(code)
}
#[cfg(windows)]
fn synthetic_exit_status(code: i32) -> ExitStatus {
use std::os::windows::process::ExitStatusExt;
#[expect(clippy::unwrap_used)]
std::process::ExitStatus::from_raw(code.try_into().unwrap())
}