This PR introduces a single integration test for `cargo mcp`, though it also introduces a number of reusable components so that it should be easier to introduce more integration tests going forward. The new test is introduced in `codex-rs/mcp-server/tests/elicitation.rs` and the reusable pieces are in `codex-rs/mcp-server/tests/common`. The test itself verifies new functionality around elicitations introduced in https://github.com/openai/codex/pull/1623 (and the fix introduced in https://github.com/openai/codex/pull/1629) by doing the following: - starts a mock model provider with canned responses for `/v1/chat/completions` - starts the MCP server with a `config.toml` to use that model provider (and `approval_policy = "untrusted"`) - sends the `codex` tool call which causes the mock model provider to request a shell call for `git init` - the MCP server sends an elicitation to the client to approve the request - the client replies to the elicitation with `"approved"` - the MCP server runs the command and re-samples the model, getting a `"finish_reason": "stop"` - in turn, the MCP server sends the final response to the original `codex` tool call - verifies that `git init` ran as expected To test: ``` cargo test shell_command_approval_triggers_elicitation ``` In writing this test, I discovered that `ExecApprovalResponse` does not conform to `ElicitResult`, so I added a TODO to fix that, since I think that should be updated in a separate PR. As it stands, this PR does not update any business logic, though it does make a number of members of the `mcp-server` crate `pub` so they can be used in the test. One additional learning from this PR is that `std::process::Command::cargo_bin()` from the `assert_cmd` trait is only available for `std::process::Command`, but we really want to use `tokio::process::Command` so that everything is async and we can leverage utilities like `tokio::time::timeout()`. The trick I came up with was to use `cargo_bin()` to locate the program, and then to use `std::process::Command::get_program()` when constructing the `tokio::process::Command`.
123 lines
4.5 KiB
Rust
123 lines
4.5 KiB
Rust
//! Prototype MCP server.
|
||
#![deny(clippy::print_stdout, clippy::print_stderr)]
|
||
|
||
use std::io::Result as IoResult;
|
||
use std::path::PathBuf;
|
||
|
||
use mcp_types::JSONRPCMessage;
|
||
use tokio::io::AsyncBufReadExt;
|
||
use tokio::io::AsyncWriteExt;
|
||
use tokio::io::BufReader;
|
||
use tokio::io::{self};
|
||
use tokio::sync::mpsc;
|
||
use tracing::debug;
|
||
use tracing::error;
|
||
use tracing::info;
|
||
|
||
mod codex_tool_config;
|
||
mod codex_tool_runner;
|
||
mod json_to_toml;
|
||
mod message_processor;
|
||
mod outgoing_message;
|
||
|
||
use crate::message_processor::MessageProcessor;
|
||
use crate::outgoing_message::OutgoingMessage;
|
||
use crate::outgoing_message::OutgoingMessageSender;
|
||
|
||
pub use crate::codex_tool_config::CodexToolCallParam;
|
||
pub use crate::codex_tool_runner::ExecApprovalElicitRequestParams;
|
||
pub use crate::codex_tool_runner::ExecApprovalResponse;
|
||
|
||
/// Size of the bounded channels used to communicate between tasks. The value
|
||
/// is a balance between throughput and memory usage – 128 messages should be
|
||
/// plenty for an interactive CLI.
|
||
const CHANNEL_CAPACITY: usize = 128;
|
||
|
||
pub async fn run_main(codex_linux_sandbox_exe: Option<PathBuf>) -> IoResult<()> {
|
||
// Install a simple subscriber so `tracing` output is visible. Users can
|
||
// control the log level with `RUST_LOG`.
|
||
tracing_subscriber::fmt()
|
||
.with_writer(std::io::stderr)
|
||
.init();
|
||
|
||
// Set up channels.
|
||
let (incoming_tx, mut incoming_rx) = mpsc::channel::<JSONRPCMessage>(CHANNEL_CAPACITY);
|
||
let (outgoing_tx, mut outgoing_rx) = mpsc::channel::<OutgoingMessage>(CHANNEL_CAPACITY);
|
||
|
||
// Task: read from stdin, push to `incoming_tx`.
|
||
let stdin_reader_handle = tokio::spawn({
|
||
let incoming_tx = incoming_tx.clone();
|
||
async move {
|
||
let stdin = io::stdin();
|
||
let reader = BufReader::new(stdin);
|
||
let mut lines = reader.lines();
|
||
|
||
while let Some(line) = lines.next_line().await.unwrap_or_default() {
|
||
match serde_json::from_str::<JSONRPCMessage>(&line) {
|
||
Ok(msg) => {
|
||
if incoming_tx.send(msg).await.is_err() {
|
||
// Receiver gone – nothing left to do.
|
||
break;
|
||
}
|
||
}
|
||
Err(e) => error!("Failed to deserialize JSONRPCMessage: {e}"),
|
||
}
|
||
}
|
||
|
||
debug!("stdin reader finished (EOF)");
|
||
}
|
||
});
|
||
|
||
// Task: process incoming messages.
|
||
let processor_handle = tokio::spawn({
|
||
let outgoing_message_sender = OutgoingMessageSender::new(outgoing_tx);
|
||
let mut processor = MessageProcessor::new(outgoing_message_sender, codex_linux_sandbox_exe);
|
||
async move {
|
||
while let Some(msg) = incoming_rx.recv().await {
|
||
match msg {
|
||
JSONRPCMessage::Request(r) => processor.process_request(r).await,
|
||
JSONRPCMessage::Response(r) => processor.process_response(r).await,
|
||
JSONRPCMessage::Notification(n) => processor.process_notification(n),
|
||
JSONRPCMessage::Error(e) => processor.process_error(e),
|
||
}
|
||
}
|
||
|
||
info!("processor task exited (channel closed)");
|
||
}
|
||
});
|
||
|
||
// Task: write outgoing messages to stdout.
|
||
let stdout_writer_handle = tokio::spawn(async move {
|
||
let mut stdout = io::stdout();
|
||
while let Some(outgoing_message) = outgoing_rx.recv().await {
|
||
let msg: JSONRPCMessage = outgoing_message.into();
|
||
match serde_json::to_string(&msg) {
|
||
Ok(json) => {
|
||
if let Err(e) = stdout.write_all(json.as_bytes()).await {
|
||
error!("Failed to write to stdout: {e}");
|
||
break;
|
||
}
|
||
if let Err(e) = stdout.write_all(b"\n").await {
|
||
error!("Failed to write newline to stdout: {e}");
|
||
break;
|
||
}
|
||
if let Err(e) = stdout.flush().await {
|
||
error!("Failed to flush stdout: {e}");
|
||
break;
|
||
}
|
||
}
|
||
Err(e) => error!("Failed to serialize JSONRPCMessage: {e}"),
|
||
}
|
||
}
|
||
|
||
info!("stdout writer exited (channel closed)");
|
||
});
|
||
|
||
// Wait for all tasks to finish. The typical exit path is the stdin reader
|
||
// hitting EOF which, once it drops `incoming_tx`, propagates shutdown to
|
||
// the processor and then to the stdout task.
|
||
let _ = tokio::join!(stdin_reader_handle, processor_handle, stdout_writer_handle);
|
||
|
||
Ok(())
|
||
}
|