Files
llmx/codex-rs/core/src/client_common.rs
Dylan 3e8bcf0247 [prompts] Add <environment_context> (#1869)
## Summary
Includes a new user message in the api payload which provides useful
environment context for the model, so it knows about things like the
current working directory and the sandbox.

## Testing
Updated unit tests
2025-08-06 01:13:31 -07:00

271 lines
9.1 KiB
Rust

use crate::config_types::ReasoningEffort as ReasoningEffortConfig;
use crate::config_types::ReasoningSummary as ReasoningSummaryConfig;
use crate::error::Result;
use crate::git_info::GitInfo;
use crate::model_family::ModelFamily;
use crate::models::ContentItem;
use crate::models::ResponseItem;
use crate::openai_tools::OpenAiTool;
use crate::protocol::AskForApproval;
use crate::protocol::SandboxPolicy;
use crate::protocol::TokenUsage;
use codex_apply_patch::APPLY_PATCH_TOOL_INSTRUCTIONS;
use futures::Stream;
use serde::Serialize;
use std::borrow::Cow;
use std::fmt::Display;
use std::path::PathBuf;
use std::pin::Pin;
use std::task::Context;
use std::task::Poll;
use tokio::sync::mpsc;
/// The `instructions` field in the payload sent to a model should always start
/// with this content.
const BASE_INSTRUCTIONS: &str = include_str!("../prompt.md");
/// wraps environment context message in a tag for the model to parse more easily.
const ENVIRONMENT_CONTEXT_START: &str = "<environment_context>\n\n";
const ENVIRONMENT_CONTEXT_END: &str = "\n\n</environment_context>";
/// wraps user instructions message in a tag for the model to parse more easily.
const USER_INSTRUCTIONS_START: &str = "<user_instructions>\n\n";
const USER_INSTRUCTIONS_END: &str = "\n\n</user_instructions>";
#[derive(Debug, Clone)]
pub(crate) struct EnvironmentContext {
pub cwd: PathBuf,
pub git_info: Option<GitInfo>,
pub approval_policy: AskForApproval,
pub sandbox_policy: SandboxPolicy,
}
impl Display for EnvironmentContext {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
writeln!(
f,
"Current working directory: {}",
self.cwd.to_string_lossy()
)?;
writeln!(f, "Is directory a git repo: {}", self.git_info.is_some())?;
writeln!(f, "Approval policy: {}", self.approval_policy)?;
writeln!(f, "Sandbox policy: {}", self.sandbox_policy)?;
let network_access = match self.sandbox_policy.clone() {
SandboxPolicy::DangerFullAccess => "enabled",
SandboxPolicy::ReadOnly => "restricted",
SandboxPolicy::WorkspaceWrite { network_access, .. } => {
if network_access {
"enabled"
} else {
"restricted"
}
}
};
writeln!(f, "Network access: {network_access}")?;
Ok(())
}
}
/// API request payload for a single model turn.
#[derive(Default, Debug, Clone)]
pub struct Prompt {
/// Conversation context input items.
pub input: Vec<ResponseItem>,
/// Optional instructions from the user to amend to the built-in agent
/// instructions.
pub user_instructions: Option<String>,
/// Whether to store response on server side (disable_response_storage = !store).
pub store: bool,
/// A list of key-value pairs that will be added as a developer message
/// for the model to use
pub environment_context: Option<EnvironmentContext>,
/// Tools available to the model, including additional tools sourced from
/// external MCP servers.
pub tools: Vec<OpenAiTool>,
/// Optional override for the built-in BASE_INSTRUCTIONS.
pub base_instructions_override: Option<String>,
}
impl Prompt {
pub(crate) fn get_full_instructions(&self, model: &ModelFamily) -> Cow<'_, str> {
let base = self
.base_instructions_override
.as_deref()
.unwrap_or(BASE_INSTRUCTIONS);
let mut sections: Vec<&str> = vec![base];
if model.needs_special_apply_patch_instructions {
sections.push(APPLY_PATCH_TOOL_INSTRUCTIONS);
}
Cow::Owned(sections.join("\n"))
}
fn get_formatted_user_instructions(&self) -> Option<String> {
self.user_instructions
.as_ref()
.map(|ui| format!("{USER_INSTRUCTIONS_START}{ui}{USER_INSTRUCTIONS_END}"))
}
fn get_formatted_environment_context(&self) -> Option<String> {
self.environment_context
.as_ref()
.map(|ec| format!("{ENVIRONMENT_CONTEXT_START}{ec}{ENVIRONMENT_CONTEXT_END}"))
}
pub(crate) fn get_formatted_input(&self) -> Vec<ResponseItem> {
let mut input_with_instructions = Vec::with_capacity(self.input.len() + 2);
if let Some(ec) = self.get_formatted_environment_context() {
input_with_instructions.push(ResponseItem::Message {
id: None,
role: "user".to_string(),
content: vec![ContentItem::InputText { text: ec }],
});
}
if let Some(ui) = self.get_formatted_user_instructions() {
input_with_instructions.push(ResponseItem::Message {
id: None,
role: "user".to_string(),
content: vec![ContentItem::InputText { text: ui }],
});
}
input_with_instructions.extend(self.input.clone());
input_with_instructions
}
}
#[derive(Debug)]
pub enum ResponseEvent {
Created,
OutputItemDone(ResponseItem),
Completed {
response_id: String,
token_usage: Option<TokenUsage>,
},
OutputTextDelta(String),
ReasoningSummaryDelta(String),
ReasoningContentDelta(String),
}
#[derive(Debug, Serialize)]
pub(crate) struct Reasoning {
pub(crate) effort: OpenAiReasoningEffort,
#[serde(skip_serializing_if = "Option::is_none")]
pub(crate) summary: Option<OpenAiReasoningSummary>,
}
/// See https://platform.openai.com/docs/guides/reasoning?api-mode=responses#get-started-with-reasoning
#[derive(Debug, Serialize, Default, Clone, Copy)]
#[serde(rename_all = "lowercase")]
pub(crate) enum OpenAiReasoningEffort {
Low,
#[default]
Medium,
High,
}
impl From<ReasoningEffortConfig> for Option<OpenAiReasoningEffort> {
fn from(effort: ReasoningEffortConfig) -> Self {
match effort {
ReasoningEffortConfig::Low => Some(OpenAiReasoningEffort::Low),
ReasoningEffortConfig::Medium => Some(OpenAiReasoningEffort::Medium),
ReasoningEffortConfig::High => Some(OpenAiReasoningEffort::High),
ReasoningEffortConfig::None => None,
}
}
}
/// A summary of the reasoning performed by the model. This can be useful for
/// debugging and understanding the model's reasoning process.
/// See https://platform.openai.com/docs/guides/reasoning?api-mode=responses#reasoning-summaries
#[derive(Debug, Serialize, Default, Clone, Copy)]
#[serde(rename_all = "lowercase")]
pub(crate) enum OpenAiReasoningSummary {
#[default]
Auto,
Concise,
Detailed,
}
impl From<ReasoningSummaryConfig> for Option<OpenAiReasoningSummary> {
fn from(summary: ReasoningSummaryConfig) -> Self {
match summary {
ReasoningSummaryConfig::Auto => Some(OpenAiReasoningSummary::Auto),
ReasoningSummaryConfig::Concise => Some(OpenAiReasoningSummary::Concise),
ReasoningSummaryConfig::Detailed => Some(OpenAiReasoningSummary::Detailed),
ReasoningSummaryConfig::None => None,
}
}
}
/// Request object that is serialized as JSON and POST'ed when using the
/// Responses API.
#[derive(Debug, Serialize)]
pub(crate) struct ResponsesApiRequest<'a> {
pub(crate) model: &'a str,
pub(crate) instructions: &'a str,
// TODO(mbolin): ResponseItem::Other should not be serialized. Currently,
// we code defensively to avoid this case, but perhaps we should use a
// separate enum for serialization.
pub(crate) input: &'a Vec<ResponseItem>,
pub(crate) tools: &'a [serde_json::Value],
pub(crate) tool_choice: &'static str,
pub(crate) parallel_tool_calls: bool,
pub(crate) reasoning: Option<Reasoning>,
/// true when using the Responses API.
pub(crate) store: bool,
pub(crate) stream: bool,
pub(crate) include: Vec<String>,
}
pub(crate) fn create_reasoning_param_for_request(
model_family: &ModelFamily,
effort: ReasoningEffortConfig,
summary: ReasoningSummaryConfig,
) -> Option<Reasoning> {
if model_family.supports_reasoning_summaries {
let effort: Option<OpenAiReasoningEffort> = effort.into();
let effort = effort?;
Some(Reasoning {
effort,
summary: summary.into(),
})
} else {
None
}
}
pub(crate) struct ResponseStream {
pub(crate) rx_event: mpsc::Receiver<Result<ResponseEvent>>,
}
impl Stream for ResponseStream {
type Item = Result<ResponseEvent>;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
self.rx_event.poll_recv(cx)
}
}
#[cfg(test)]
mod tests {
#![allow(clippy::expect_used)]
use crate::model_family::find_family_for_model;
use super::*;
#[test]
fn get_full_instructions_no_user_content() {
let prompt = Prompt {
user_instructions: Some("custom instruction".to_string()),
..Default::default()
};
let expected = format!("{BASE_INSTRUCTIONS}\n{APPLY_PATCH_TOOL_INSTRUCTIONS}");
let model_family = find_family_for_model("gpt-4.1").expect("known model slug");
let full = prompt.get_full_instructions(&model_family);
assert_eq!(full, expected);
}
}