Files
llmx/codex-rs/core/src/openai_tools.rs
Gabriel Peal 8828f6f082 Add an experimental plan tool (#1726)
This adds a tool the model can call to update a plan. The tool doesn't
actually _do_ anything but it gives clients a chance to read and render
the structured plan. We will likely iterate on the prompt and tools
exposed for planning over time.
2025-07-29 14:22:02 -04:00

166 lines
5.1 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
use serde::Serialize;
use serde_json::json;
use std::collections::BTreeMap;
use std::sync::LazyLock;
use crate::client_common::Prompt;
use crate::plan_tool::PLAN_TOOL;
#[derive(Debug, Clone, Serialize)]
pub(crate) struct ResponsesApiTool {
pub(crate) name: &'static str,
pub(crate) description: &'static str,
pub(crate) strict: bool,
pub(crate) parameters: JsonSchema,
}
/// When serialized as JSON, this produces a valid "Tool" in the OpenAI
/// Responses API.
#[derive(Debug, Clone, Serialize)]
#[serde(tag = "type")]
pub(crate) enum OpenAiTool {
#[serde(rename = "function")]
Function(ResponsesApiTool),
#[serde(rename = "local_shell")]
LocalShell {},
}
/// Generic JSONSchema subset needed for our tool definitions
#[derive(Debug, Clone, Serialize)]
#[serde(tag = "type", rename_all = "lowercase")]
pub(crate) enum JsonSchema {
String,
Number,
Array {
items: Box<JsonSchema>,
},
Object {
properties: BTreeMap<String, JsonSchema>,
required: &'static [&'static str],
#[serde(rename = "additionalProperties")]
additional_properties: bool,
},
}
/// Tool usage specification
static DEFAULT_TOOLS: LazyLock<Vec<OpenAiTool>> = LazyLock::new(|| {
let mut properties = BTreeMap::new();
properties.insert(
"command".to_string(),
JsonSchema::Array {
items: Box::new(JsonSchema::String),
},
);
properties.insert("workdir".to_string(), JsonSchema::String);
properties.insert("timeout".to_string(), JsonSchema::Number);
vec![OpenAiTool::Function(ResponsesApiTool {
name: "shell",
description: "Runs a shell command, and returns its output.",
strict: false,
parameters: JsonSchema::Object {
properties,
required: &["command"],
additional_properties: false,
},
})]
});
static DEFAULT_CODEX_MODEL_TOOLS: LazyLock<Vec<OpenAiTool>> =
LazyLock::new(|| vec![OpenAiTool::LocalShell {}]);
/// Returns JSON values that are compatible with Function Calling in the
/// Responses API:
/// https://platform.openai.com/docs/guides/function-calling?api-mode=responses
pub(crate) fn create_tools_json_for_responses_api(
prompt: &Prompt,
model: &str,
include_plan_tool: bool,
) -> crate::error::Result<Vec<serde_json::Value>> {
// Assemble tool list: built-in tools + any extra tools from the prompt.
let default_tools = if model.starts_with("codex") {
&DEFAULT_CODEX_MODEL_TOOLS
} else {
&DEFAULT_TOOLS
};
let mut tools_json = Vec::with_capacity(default_tools.len() + prompt.extra_tools.len());
for t in default_tools.iter() {
tools_json.push(serde_json::to_value(t)?);
}
tools_json.extend(
prompt
.extra_tools
.clone()
.into_iter()
.map(|(name, tool)| mcp_tool_to_openai_tool(name, tool)),
);
if include_plan_tool {
tools_json.push(serde_json::to_value(PLAN_TOOL.clone())?);
}
Ok(tools_json)
}
/// Returns JSON values that are compatible with Function Calling in the
/// Chat Completions API:
/// https://platform.openai.com/docs/guides/function-calling?api-mode=chat
pub(crate) fn create_tools_json_for_chat_completions_api(
prompt: &Prompt,
model: &str,
include_plan_tool: bool,
) -> crate::error::Result<Vec<serde_json::Value>> {
// We start with the JSON for the Responses API and than rewrite it to match
// the chat completions tool call format.
let responses_api_tools_json =
create_tools_json_for_responses_api(prompt, model, include_plan_tool)?;
let tools_json = responses_api_tools_json
.into_iter()
.filter_map(|mut tool| {
if tool.get("type") != Some(&serde_json::Value::String("function".to_string())) {
return None;
}
if let Some(map) = tool.as_object_mut() {
// Remove "type" field as it is not needed in chat completions.
map.remove("type");
Some(json!({
"type": "function",
"function": map,
}))
} else {
None
}
})
.collect::<Vec<serde_json::Value>>();
Ok(tools_json)
}
fn mcp_tool_to_openai_tool(
fully_qualified_name: String,
tool: mcp_types::Tool,
) -> serde_json::Value {
let mcp_types::Tool {
description,
mut input_schema,
..
} = tool;
// OpenAI models mandate the "properties" field in the schema. The Agents
// SDK fixed this by inserting an empty object for "properties" if it is not
// already present https://github.com/openai/openai-agents-python/issues/449
// so here we do the same.
if input_schema.properties.is_none() {
input_schema.properties = Some(serde_json::Value::Object(serde_json::Map::new()));
}
// TODO(mbolin): Change the contract of this function to return
// ResponsesApiTool.
json!({
"name": fully_qualified_name,
"description": description,
"parameters": input_schema,
"type": "function",
})
}