Building on the work of https://github.com/openai/codex/pull/1702, this changes how a shell call to `apply_patch` is handled. Previously, a shell call to `apply_patch` was always handled in-process, never leveraging a sandbox. To determine whether the `apply_patch` operation could be auto-approved, the `is_write_patch_constrained_to_writable_paths()` function would check if all the paths listed in the paths were writable. If so, the agent would apply the changes listed in the patch. Unfortunately, this approach afforded a loophole: symlinks! * For a soft link, we could fix this issue by tracing the link and checking whether the target is in the set of writable paths, however... * ...For a hard link, things are not as simple. We can run `stat FILE` to see if the number of links is greater than 1, but then we would have to do something potentially expensive like `find . -inum <inode_number>` to find the other paths for `FILE`. Further, even if this worked, this approach runs the risk of a [TOCTOU](https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use) race condition, so it is not robust. The solution, implemented in this PR, is to take the virtual execution of the `apply_patch` CLI into an _actual_ execution using `codex --codex-run-as-apply-patch PATCH`, which we can run under the sandbox the user specified, just like any other `shell` call. This, of course, assumes that the sandbox prevents writing through symlinks as a mechanism to write to folders that are not in the writable set configured by the sandbox. I verified this by testing the following on both Mac and Linux: ```shell #!/usr/bin/env bash set -euo pipefail # Can running a command in SANDBOX_DIR write a file in EXPLOIT_DIR? # Codex is run in SANDBOX_DIR, so writes should be constrianed to this directory. SANDBOX_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX) # EXPLOIT_DIR is outside of SANDBOX_DIR, so let's see if we can write to it. EXPLOIT_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX) echo "SANDBOX_DIR: $SANDBOX_DIR" echo "EXPLOIT_DIR: $EXPLOIT_DIR" cleanup() { # Only remove if it looks sane and still exists [[ -n "${SANDBOX_DIR:-}" && -d "$SANDBOX_DIR" ]] && rm -rf -- "$SANDBOX_DIR" [[ -n "${EXPLOIT_DIR:-}" && -d "$EXPLOIT_DIR" ]] && rm -rf -- "$EXPLOIT_DIR" } trap cleanup EXIT echo "I am the original content" > "${EXPLOIT_DIR}/original.txt" # Drop the -s to test hard links. ln -s "${EXPLOIT_DIR}/original.txt" "${SANDBOX_DIR}/link-to-original.txt" cat "${SANDBOX_DIR}/link-to-original.txt" if [[ "$(uname)" == "Linux" ]]; then SANDBOX_SUBCOMMAND=landlock else SANDBOX_SUBCOMMAND=seatbelt fi # Attempt the exploit cd "${SANDBOX_DIR}" codex debug "${SANDBOX_SUBCOMMAND}" bash -lc "echo pwned > ./link-to-original.txt" || true cat "${EXPLOIT_DIR}/original.txt" ``` Admittedly, this change merits a proper integration test, but I think I will have to do that in a follow-up PR.
Codex CLI (Rust Implementation)
We provide Codex CLI as a standalone, native executable to ensure a zero-dependency install.
Installing Codex
Today, the easiest way to install Codex is via npm, though we plan to publish Codex to other package managers soon.
npm i -g @openai/codex@native
codex
You can also download a platform-specific release directly from our GitHub Releases.
What's new in the Rust CLI
While we are working to close the gap between the TypeScript and Rust implementations of Codex CLI, note that the Rust CLI has a number of features that the TypeScript CLI does not!
Config
Codex supports a rich set of configuration options. Note that the Rust CLI uses config.toml instead of config.json. See config.md for details.
Model Context Protocol Support
Codex CLI functions as an MCP client that can connect to MCP servers on startup. See the mcp_servers section in the configuration documentation for details.
It is still experimental, but you can also launch Codex as an MCP server by running codex mcp. Use the @modelcontextprotocol/inspector to try it out:
npx @modelcontextprotocol/inspector codex mcp
Notifications
You can enable notifications by configuring a script that is run whenever the agent finishes a turn. The notify documentation includes a detailed example that explains how to get desktop notifications via terminal-notifier on macOS.
codex exec to run Codex programmatially/non-interactively
To run Codex non-interactively, run codex exec PROMPT (you can also pass the prompt via stdin) and Codex will work on your task until it decides that it is done and exits. Output is printed to the terminal directly. You can set the RUST_LOG environment variable to see more about what's going on.
Use @ for file search
Typing @ triggers a fuzzy-filename search over the workspace root. Use up/down to select among the results and Tab or Enter to replace the @ with the selected path. You can use Esc to cancel the search.
--cd/-C flag
Sometimes it is not convenient to cd to the directory you want Codex to use as the "working root" before running Codex. Fortunately, codex supports a --cd option so you can specify whatever folder you want. You can confirm that Codex is honoring --cd by double-checking the workdir it reports in the TUI at the start of a new session.
Shell completions
Generate shell completion scripts via:
codex completion bash
codex completion zsh
codex completion fish
Experimenting with the Codex Sandbox
To test to see what happens when a command is run under the sandbox provided by Codex, we provide the following subcommands in Codex CLI:
# macOS
codex debug seatbelt [--full-auto] [COMMAND]...
# Linux
codex debug landlock [--full-auto] [COMMAND]...
Selecting a sandbox policy via --sandbox
The Rust CLI exposes a dedicated --sandbox (-s) flag that lets you pick the sandbox policy without having to reach for the generic -c/--config option:
# Run Codex with the default, read-only sandbox
codex --sandbox read-only
# Allow the agent to write within the current workspace while still blocking network access
codex --sandbox workspace-write
# Danger! Disable sandboxing entirely (only do this if you are already running in a container or other isolated env)
codex --sandbox danger-full-access
The same setting can be persisted in ~/.codex/config.toml via the top-level sandbox_mode = "MODE" key, e.g. sandbox_mode = "workspace-write".
Code Organization
This folder is the root of a Cargo workspace. It contains quite a bit of experimental code, but here are the key crates:
core/contains the business logic for Codex. Ultimately, we hope this to be a library crate that is generally useful for building other Rust/native applications that use Codex.exec/"headless" CLI for use in automation.tui/CLI that launches a fullscreen TUI built with Ratatui.cli/CLI multitool that provides the aforementioned CLIs via subcommands.