…ity with internal JsonSchema enum Closes: #1973 Co-authored-by: Dylan Hurd <dylan.hurd@openai.com>
833 lines
30 KiB
Rust
833 lines
30 KiB
Rust
use serde::Deserialize;
|
||
use serde::Serialize;
|
||
use serde_json::Value as JsonValue;
|
||
use serde_json::json;
|
||
use std::collections::BTreeMap;
|
||
use std::collections::HashMap;
|
||
|
||
use crate::model_family::ModelFamily;
|
||
use crate::plan_tool::PLAN_TOOL;
|
||
use crate::protocol::AskForApproval;
|
||
use crate::protocol::SandboxPolicy;
|
||
|
||
#[derive(Debug, Clone, Serialize, PartialEq)]
|
||
pub struct ResponsesApiTool {
|
||
pub(crate) name: String,
|
||
pub(crate) description: String,
|
||
/// TODO: Validation. When strict is set to true, the JSON schema,
|
||
/// `required` and `additional_properties` must be present. All fields in
|
||
/// `properties` must be present in `required`.
|
||
pub(crate) strict: bool,
|
||
pub(crate) parameters: JsonSchema,
|
||
}
|
||
|
||
/// When serialized as JSON, this produces a valid "Tool" in the OpenAI
|
||
/// Responses API.
|
||
#[derive(Debug, Clone, Serialize, PartialEq)]
|
||
#[serde(tag = "type")]
|
||
pub(crate) enum OpenAiTool {
|
||
#[serde(rename = "function")]
|
||
Function(ResponsesApiTool),
|
||
#[serde(rename = "local_shell")]
|
||
LocalShell {},
|
||
}
|
||
|
||
#[derive(Debug, Clone)]
|
||
pub enum ConfigShellToolType {
|
||
DefaultShell,
|
||
ShellWithRequest { sandbox_policy: SandboxPolicy },
|
||
LocalShell,
|
||
}
|
||
|
||
#[derive(Debug, Clone)]
|
||
pub struct ToolsConfig {
|
||
pub shell_type: ConfigShellToolType,
|
||
pub plan_tool: bool,
|
||
}
|
||
|
||
impl ToolsConfig {
|
||
pub fn new(
|
||
model_family: &ModelFamily,
|
||
approval_policy: AskForApproval,
|
||
sandbox_policy: SandboxPolicy,
|
||
include_plan_tool: bool,
|
||
) -> Self {
|
||
let mut shell_type = if model_family.uses_local_shell_tool {
|
||
ConfigShellToolType::LocalShell
|
||
} else {
|
||
ConfigShellToolType::DefaultShell
|
||
};
|
||
if matches!(approval_policy, AskForApproval::OnRequest) {
|
||
shell_type = ConfigShellToolType::ShellWithRequest {
|
||
sandbox_policy: sandbox_policy.clone(),
|
||
}
|
||
}
|
||
|
||
Self {
|
||
shell_type,
|
||
plan_tool: include_plan_tool,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Generic JSON‑Schema subset needed for our tool definitions
|
||
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
|
||
#[serde(tag = "type", rename_all = "lowercase")]
|
||
pub(crate) enum JsonSchema {
|
||
Boolean {
|
||
#[serde(skip_serializing_if = "Option::is_none")]
|
||
description: Option<String>,
|
||
},
|
||
String {
|
||
#[serde(skip_serializing_if = "Option::is_none")]
|
||
description: Option<String>,
|
||
},
|
||
/// MCP schema allows "number" | "integer" for Number
|
||
#[serde(alias = "integer")]
|
||
Number {
|
||
#[serde(skip_serializing_if = "Option::is_none")]
|
||
description: Option<String>,
|
||
},
|
||
Array {
|
||
items: Box<JsonSchema>,
|
||
|
||
#[serde(skip_serializing_if = "Option::is_none")]
|
||
description: Option<String>,
|
||
},
|
||
Object {
|
||
properties: BTreeMap<String, JsonSchema>,
|
||
#[serde(skip_serializing_if = "Option::is_none")]
|
||
required: Option<Vec<String>>,
|
||
#[serde(
|
||
rename = "additionalProperties",
|
||
skip_serializing_if = "Option::is_none"
|
||
)]
|
||
additional_properties: Option<bool>,
|
||
},
|
||
}
|
||
|
||
fn create_shell_tool() -> OpenAiTool {
|
||
let mut properties = BTreeMap::new();
|
||
properties.insert(
|
||
"command".to_string(),
|
||
JsonSchema::Array {
|
||
items: Box::new(JsonSchema::String { description: None }),
|
||
description: None,
|
||
},
|
||
);
|
||
properties.insert(
|
||
"workdir".to_string(),
|
||
JsonSchema::String { description: None },
|
||
);
|
||
properties.insert(
|
||
"timeout".to_string(),
|
||
JsonSchema::Number { description: None },
|
||
);
|
||
|
||
OpenAiTool::Function(ResponsesApiTool {
|
||
name: "shell".to_string(),
|
||
description: "Runs a shell command and returns its output".to_string(),
|
||
strict: false,
|
||
parameters: JsonSchema::Object {
|
||
properties,
|
||
required: Some(vec!["command".to_string()]),
|
||
additional_properties: Some(false),
|
||
},
|
||
})
|
||
}
|
||
|
||
fn create_shell_tool_for_sandbox(sandbox_policy: &SandboxPolicy) -> OpenAiTool {
|
||
let mut properties = BTreeMap::new();
|
||
properties.insert(
|
||
"command".to_string(),
|
||
JsonSchema::Array {
|
||
items: Box::new(JsonSchema::String { description: None }),
|
||
description: Some("The command to execute".to_string()),
|
||
},
|
||
);
|
||
properties.insert(
|
||
"workdir".to_string(),
|
||
JsonSchema::String {
|
||
description: Some("The working directory to execute the command in".to_string()),
|
||
},
|
||
);
|
||
properties.insert(
|
||
"timeout".to_string(),
|
||
JsonSchema::Number {
|
||
description: Some("The timeout for the command in milliseconds".to_string()),
|
||
},
|
||
);
|
||
|
||
if matches!(sandbox_policy, SandboxPolicy::WorkspaceWrite { .. }) {
|
||
properties.insert(
|
||
"with_escalated_permissions".to_string(),
|
||
JsonSchema::Boolean {
|
||
description: Some("Whether to request escalated permissions. Set to true if command needs to be run without sandbox restrictions".to_string()),
|
||
},
|
||
);
|
||
properties.insert(
|
||
"justification".to_string(),
|
||
JsonSchema::String {
|
||
description: Some("Only set if ask_for_escalated_permissions is true. 1-sentence explanation of why we want to run this command.".to_string()),
|
||
},
|
||
);
|
||
}
|
||
|
||
let description = match sandbox_policy {
|
||
SandboxPolicy::WorkspaceWrite {
|
||
network_access,
|
||
..
|
||
} => {
|
||
format!(
|
||
r#"
|
||
The shell tool is used to execute shell commands.
|
||
- When invoking the shell tool, your call will be running in a landlock sandbox, and some shell commands will require escalated privileges:
|
||
- Types of actions that require escalated privileges:
|
||
- Reading files outside the current directory
|
||
- Writing files outside the current directory, and protected folders like .git or .env{}
|
||
- Examples of commands that require escalated privileges:
|
||
- git commit
|
||
- npm install or pnpm install
|
||
- cargo build
|
||
- cargo test
|
||
- When invoking a command that will require escalated privileges:
|
||
- Provide the with_escalated_permissions parameter with the boolean value true
|
||
- Include a short, 1 sentence explanation for why we need to run with_escalated_permissions in the justification parameter."#,
|
||
if !network_access {
|
||
"\n - Commands that require network access\n"
|
||
} else {
|
||
""
|
||
}
|
||
)
|
||
}
|
||
SandboxPolicy::DangerFullAccess => {
|
||
"Runs a shell command and returns its output.".to_string()
|
||
}
|
||
SandboxPolicy::ReadOnly => {
|
||
r#"
|
||
The shell tool is used to execute shell commands.
|
||
- When invoking the shell tool, your call will be running in a landlock sandbox, and some shell commands (including apply_patch) will require escalated permissions:
|
||
- Types of actions that require escalated privileges:
|
||
- Reading files outside the current directory
|
||
- Writing files
|
||
- Applying patches
|
||
- Examples of commands that require escalated privileges:
|
||
- apply_patch
|
||
- git commit
|
||
- npm install or pnpm install
|
||
- cargo build
|
||
- cargo test
|
||
- When invoking a command that will require escalated privileges:
|
||
- Provide the with_escalated_permissions parameter with the boolean value true
|
||
- Include a short, 1 sentence explanation for why we need to run with_escalated_permissions in the justification parameter"#.to_string()
|
||
}
|
||
};
|
||
|
||
OpenAiTool::Function(ResponsesApiTool {
|
||
name: "shell".to_string(),
|
||
description,
|
||
strict: false,
|
||
parameters: JsonSchema::Object {
|
||
properties,
|
||
required: Some(vec!["command".to_string()]),
|
||
additional_properties: Some(false),
|
||
},
|
||
})
|
||
}
|
||
|
||
/// Returns JSON values that are compatible with Function Calling in the
|
||
/// Responses API:
|
||
/// https://platform.openai.com/docs/guides/function-calling?api-mode=responses
|
||
pub(crate) fn create_tools_json_for_responses_api(
|
||
tools: &Vec<OpenAiTool>,
|
||
) -> crate::error::Result<Vec<serde_json::Value>> {
|
||
let mut tools_json = Vec::new();
|
||
|
||
for tool in tools {
|
||
tools_json.push(serde_json::to_value(tool)?);
|
||
}
|
||
|
||
Ok(tools_json)
|
||
}
|
||
|
||
/// Returns JSON values that are compatible with Function Calling in the
|
||
/// Chat Completions API:
|
||
/// https://platform.openai.com/docs/guides/function-calling?api-mode=chat
|
||
pub(crate) fn create_tools_json_for_chat_completions_api(
|
||
tools: &Vec<OpenAiTool>,
|
||
) -> crate::error::Result<Vec<serde_json::Value>> {
|
||
// We start with the JSON for the Responses API and than rewrite it to match
|
||
// the chat completions tool call format.
|
||
let responses_api_tools_json = create_tools_json_for_responses_api(tools)?;
|
||
let tools_json = responses_api_tools_json
|
||
.into_iter()
|
||
.filter_map(|mut tool| {
|
||
if tool.get("type") != Some(&serde_json::Value::String("function".to_string())) {
|
||
return None;
|
||
}
|
||
|
||
if let Some(map) = tool.as_object_mut() {
|
||
// Remove "type" field as it is not needed in chat completions.
|
||
map.remove("type");
|
||
Some(json!({
|
||
"type": "function",
|
||
"function": map,
|
||
}))
|
||
} else {
|
||
None
|
||
}
|
||
})
|
||
.collect::<Vec<serde_json::Value>>();
|
||
Ok(tools_json)
|
||
}
|
||
|
||
pub(crate) fn mcp_tool_to_openai_tool(
|
||
fully_qualified_name: String,
|
||
tool: mcp_types::Tool,
|
||
) -> Result<ResponsesApiTool, serde_json::Error> {
|
||
let mcp_types::Tool {
|
||
description,
|
||
mut input_schema,
|
||
..
|
||
} = tool;
|
||
|
||
// OpenAI models mandate the "properties" field in the schema. The Agents
|
||
// SDK fixed this by inserting an empty object for "properties" if it is not
|
||
// already present https://github.com/openai/openai-agents-python/issues/449
|
||
// so here we do the same.
|
||
if input_schema.properties.is_none() {
|
||
input_schema.properties = Some(serde_json::Value::Object(serde_json::Map::new()));
|
||
}
|
||
|
||
// Serialize to a raw JSON value so we can sanitize schemas coming from MCP
|
||
// servers. Some servers omit the top-level or nested `type` in JSON
|
||
// Schemas (e.g. using enum/anyOf), or use unsupported variants like
|
||
// `integer`. Our internal JsonSchema is a small subset and requires
|
||
// `type`, so we coerce/sanitize here for compatibility.
|
||
let mut serialized_input_schema = serde_json::to_value(input_schema)?;
|
||
sanitize_json_schema(&mut serialized_input_schema);
|
||
let input_schema = serde_json::from_value::<JsonSchema>(serialized_input_schema)?;
|
||
|
||
Ok(ResponsesApiTool {
|
||
name: fully_qualified_name,
|
||
description: description.unwrap_or_default(),
|
||
strict: false,
|
||
parameters: input_schema,
|
||
})
|
||
}
|
||
|
||
/// Sanitize a JSON Schema (as serde_json::Value) so it can fit our limited
|
||
/// JsonSchema enum. This function:
|
||
/// - Ensures every schema object has a "type". If missing, infers it from
|
||
/// common keywords (properties => object, items => array, enum/const/format => string)
|
||
/// and otherwise defaults to "string".
|
||
/// - Fills required child fields (e.g. array items, object properties) with
|
||
/// permissive defaults when absent.
|
||
fn sanitize_json_schema(value: &mut JsonValue) {
|
||
match value {
|
||
JsonValue::Bool(_) => {
|
||
// JSON Schema boolean form: true/false. Coerce to an accept-all string.
|
||
*value = json!({ "type": "string" });
|
||
}
|
||
JsonValue::Array(arr) => {
|
||
for v in arr.iter_mut() {
|
||
sanitize_json_schema(v);
|
||
}
|
||
}
|
||
JsonValue::Object(map) => {
|
||
// First, recursively sanitize known nested schema holders
|
||
if let Some(props) = map.get_mut("properties") {
|
||
if let Some(props_map) = props.as_object_mut() {
|
||
for (_k, v) in props_map.iter_mut() {
|
||
sanitize_json_schema(v);
|
||
}
|
||
}
|
||
}
|
||
if let Some(items) = map.get_mut("items") {
|
||
sanitize_json_schema(items);
|
||
}
|
||
// Some schemas use oneOf/anyOf/allOf - sanitize their entries
|
||
for combiner in ["oneOf", "anyOf", "allOf", "prefixItems"] {
|
||
if let Some(v) = map.get_mut(combiner) {
|
||
sanitize_json_schema(v);
|
||
}
|
||
}
|
||
|
||
// Normalize/ensure type
|
||
let mut ty = map
|
||
.get("type")
|
||
.and_then(|v| v.as_str())
|
||
.map(|s| s.to_string());
|
||
|
||
// If type is an array (union), pick first supported; else leave to inference
|
||
if ty.is_none() {
|
||
if let Some(JsonValue::Array(types)) = map.get("type") {
|
||
for t in types {
|
||
if let Some(tt) = t.as_str() {
|
||
if matches!(
|
||
tt,
|
||
"object" | "array" | "string" | "number" | "integer" | "boolean"
|
||
) {
|
||
ty = Some(tt.to_string());
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Infer type if still missing
|
||
if ty.is_none() {
|
||
if map.contains_key("properties")
|
||
|| map.contains_key("required")
|
||
|| map.contains_key("additionalProperties")
|
||
{
|
||
ty = Some("object".to_string());
|
||
} else if map.contains_key("items") || map.contains_key("prefixItems") {
|
||
ty = Some("array".to_string());
|
||
} else if map.contains_key("enum")
|
||
|| map.contains_key("const")
|
||
|| map.contains_key("format")
|
||
{
|
||
ty = Some("string".to_string());
|
||
} else if map.contains_key("minimum")
|
||
|| map.contains_key("maximum")
|
||
|| map.contains_key("exclusiveMinimum")
|
||
|| map.contains_key("exclusiveMaximum")
|
||
|| map.contains_key("multipleOf")
|
||
{
|
||
ty = Some("number".to_string());
|
||
}
|
||
}
|
||
// If we still couldn't infer, default to string
|
||
let ty = ty.unwrap_or_else(|| "string".to_string());
|
||
map.insert("type".to_string(), JsonValue::String(ty.to_string()));
|
||
|
||
// Ensure object schemas have properties map
|
||
if ty == "object" {
|
||
if !map.contains_key("properties") {
|
||
map.insert(
|
||
"properties".to_string(),
|
||
JsonValue::Object(serde_json::Map::new()),
|
||
);
|
||
}
|
||
// If additionalProperties is an object schema, sanitize it too.
|
||
// Leave booleans as-is, since JSON Schema allows boolean here.
|
||
if let Some(ap) = map.get_mut("additionalProperties") {
|
||
let is_bool = matches!(ap, JsonValue::Bool(_));
|
||
if !is_bool {
|
||
sanitize_json_schema(ap);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Ensure array schemas have items
|
||
if ty == "array" && !map.contains_key("items") {
|
||
map.insert("items".to_string(), json!({ "type": "string" }));
|
||
}
|
||
}
|
||
_ => {}
|
||
}
|
||
}
|
||
|
||
/// Returns a list of OpenAiTools based on the provided config and MCP tools.
|
||
/// Note that the keys of mcp_tools should be fully qualified names. See
|
||
/// [`McpConnectionManager`] for more details.
|
||
pub(crate) fn get_openai_tools(
|
||
config: &ToolsConfig,
|
||
mcp_tools: Option<HashMap<String, mcp_types::Tool>>,
|
||
) -> Vec<OpenAiTool> {
|
||
let mut tools: Vec<OpenAiTool> = Vec::new();
|
||
|
||
match &config.shell_type {
|
||
ConfigShellToolType::DefaultShell => {
|
||
tools.push(create_shell_tool());
|
||
}
|
||
ConfigShellToolType::ShellWithRequest { sandbox_policy } => {
|
||
tools.push(create_shell_tool_for_sandbox(sandbox_policy));
|
||
}
|
||
ConfigShellToolType::LocalShell => {
|
||
tools.push(OpenAiTool::LocalShell {});
|
||
}
|
||
}
|
||
|
||
if config.plan_tool {
|
||
tools.push(PLAN_TOOL.clone());
|
||
}
|
||
|
||
if let Some(mcp_tools) = mcp_tools {
|
||
for (name, tool) in mcp_tools {
|
||
match mcp_tool_to_openai_tool(name.clone(), tool.clone()) {
|
||
Ok(converted_tool) => tools.push(OpenAiTool::Function(converted_tool)),
|
||
Err(e) => {
|
||
tracing::error!("Failed to convert {name:?} MCP tool to OpenAI tool: {e:?}");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
tools
|
||
}
|
||
|
||
#[cfg(test)]
|
||
#[allow(clippy::expect_used)]
|
||
mod tests {
|
||
use crate::model_family::find_family_for_model;
|
||
use mcp_types::ToolInputSchema;
|
||
use pretty_assertions::assert_eq;
|
||
|
||
use super::*;
|
||
|
||
fn assert_eq_tool_names(tools: &[OpenAiTool], expected_names: &[&str]) {
|
||
let tool_names = tools
|
||
.iter()
|
||
.map(|tool| match tool {
|
||
OpenAiTool::Function(ResponsesApiTool { name, .. }) => name,
|
||
OpenAiTool::LocalShell {} => "local_shell",
|
||
})
|
||
.collect::<Vec<_>>();
|
||
|
||
assert_eq!(
|
||
tool_names.len(),
|
||
expected_names.len(),
|
||
"tool_name mismatch, {tool_names:?}, {expected_names:?}",
|
||
);
|
||
for (name, expected_name) in tool_names.iter().zip(expected_names.iter()) {
|
||
assert_eq!(
|
||
name, expected_name,
|
||
"tool_name mismatch, {name:?}, {expected_name:?}"
|
||
);
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_get_openai_tools() {
|
||
let model_family = find_family_for_model("codex-mini-latest")
|
||
.expect("codex-mini-latest should be a valid model family");
|
||
let config = ToolsConfig::new(
|
||
&model_family,
|
||
AskForApproval::Never,
|
||
SandboxPolicy::ReadOnly,
|
||
true,
|
||
);
|
||
let tools = get_openai_tools(&config, Some(HashMap::new()));
|
||
|
||
assert_eq_tool_names(&tools, &["local_shell", "update_plan"]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_get_openai_tools_default_shell() {
|
||
let model_family = find_family_for_model("o3").expect("o3 should be a valid model family");
|
||
let config = ToolsConfig::new(
|
||
&model_family,
|
||
AskForApproval::Never,
|
||
SandboxPolicy::ReadOnly,
|
||
true,
|
||
);
|
||
let tools = get_openai_tools(&config, Some(HashMap::new()));
|
||
|
||
assert_eq_tool_names(&tools, &["shell", "update_plan"]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_get_openai_tools_mcp_tools() {
|
||
let model_family = find_family_for_model("o3").expect("o3 should be a valid model family");
|
||
let config = ToolsConfig::new(
|
||
&model_family,
|
||
AskForApproval::Never,
|
||
SandboxPolicy::ReadOnly,
|
||
false,
|
||
);
|
||
let tools = get_openai_tools(
|
||
&config,
|
||
Some(HashMap::from([(
|
||
"test_server/do_something_cool".to_string(),
|
||
mcp_types::Tool {
|
||
name: "do_something_cool".to_string(),
|
||
input_schema: ToolInputSchema {
|
||
properties: Some(serde_json::json!({
|
||
"string_argument": {
|
||
"type": "string",
|
||
},
|
||
"number_argument": {
|
||
"type": "number",
|
||
},
|
||
"object_argument": {
|
||
"type": "object",
|
||
"properties": {
|
||
"string_property": { "type": "string" },
|
||
"number_property": { "type": "number" },
|
||
},
|
||
"required": [
|
||
"string_property",
|
||
"number_property"
|
||
],
|
||
"additionalProperties": Some(false),
|
||
},
|
||
})),
|
||
required: None,
|
||
r#type: "object".to_string(),
|
||
},
|
||
output_schema: None,
|
||
title: None,
|
||
annotations: None,
|
||
description: Some("Do something cool".to_string()),
|
||
},
|
||
)])),
|
||
);
|
||
|
||
assert_eq_tool_names(&tools, &["shell", "test_server/do_something_cool"]);
|
||
|
||
assert_eq!(
|
||
tools[1],
|
||
OpenAiTool::Function(ResponsesApiTool {
|
||
name: "test_server/do_something_cool".to_string(),
|
||
parameters: JsonSchema::Object {
|
||
properties: BTreeMap::from([
|
||
(
|
||
"string_argument".to_string(),
|
||
JsonSchema::String { description: None }
|
||
),
|
||
(
|
||
"number_argument".to_string(),
|
||
JsonSchema::Number { description: None }
|
||
),
|
||
(
|
||
"object_argument".to_string(),
|
||
JsonSchema::Object {
|
||
properties: BTreeMap::from([
|
||
(
|
||
"string_property".to_string(),
|
||
JsonSchema::String { description: None }
|
||
),
|
||
(
|
||
"number_property".to_string(),
|
||
JsonSchema::Number { description: None }
|
||
),
|
||
]),
|
||
required: Some(vec![
|
||
"string_property".to_string(),
|
||
"number_property".to_string(),
|
||
]),
|
||
additional_properties: Some(false),
|
||
},
|
||
),
|
||
]),
|
||
required: None,
|
||
additional_properties: None,
|
||
},
|
||
description: "Do something cool".to_string(),
|
||
strict: false,
|
||
})
|
||
);
|
||
}
|
||
|
||
#[test]
|
||
fn test_mcp_tool_property_missing_type_defaults_to_string() {
|
||
let model_family = find_family_for_model("o3").expect("o3 should be a valid model family");
|
||
let config = ToolsConfig::new(
|
||
&model_family,
|
||
AskForApproval::Never,
|
||
SandboxPolicy::ReadOnly,
|
||
false,
|
||
);
|
||
|
||
let tools = get_openai_tools(
|
||
&config,
|
||
Some(HashMap::from([(
|
||
"dash/search".to_string(),
|
||
mcp_types::Tool {
|
||
name: "search".to_string(),
|
||
input_schema: ToolInputSchema {
|
||
properties: Some(serde_json::json!({
|
||
"query": {
|
||
"description": "search query"
|
||
}
|
||
})),
|
||
required: None,
|
||
r#type: "object".to_string(),
|
||
},
|
||
output_schema: None,
|
||
title: None,
|
||
annotations: None,
|
||
description: Some("Search docs".to_string()),
|
||
},
|
||
)])),
|
||
);
|
||
|
||
assert_eq_tool_names(&tools, &["shell", "dash/search"]);
|
||
|
||
assert_eq!(
|
||
tools[1],
|
||
OpenAiTool::Function(ResponsesApiTool {
|
||
name: "dash/search".to_string(),
|
||
parameters: JsonSchema::Object {
|
||
properties: BTreeMap::from([(
|
||
"query".to_string(),
|
||
JsonSchema::String {
|
||
description: Some("search query".to_string())
|
||
}
|
||
)]),
|
||
required: None,
|
||
additional_properties: None,
|
||
},
|
||
description: "Search docs".to_string(),
|
||
strict: false,
|
||
})
|
||
);
|
||
}
|
||
|
||
#[test]
|
||
fn test_mcp_tool_integer_normalized_to_number() {
|
||
let model_family = find_family_for_model("o3").expect("o3 should be a valid model family");
|
||
let config = ToolsConfig::new(
|
||
&model_family,
|
||
AskForApproval::Never,
|
||
SandboxPolicy::ReadOnly,
|
||
false,
|
||
);
|
||
|
||
let tools = get_openai_tools(
|
||
&config,
|
||
Some(HashMap::from([(
|
||
"dash/paginate".to_string(),
|
||
mcp_types::Tool {
|
||
name: "paginate".to_string(),
|
||
input_schema: ToolInputSchema {
|
||
properties: Some(serde_json::json!({
|
||
"page": { "type": "integer" }
|
||
})),
|
||
required: None,
|
||
r#type: "object".to_string(),
|
||
},
|
||
output_schema: None,
|
||
title: None,
|
||
annotations: None,
|
||
description: Some("Pagination".to_string()),
|
||
},
|
||
)])),
|
||
);
|
||
|
||
assert_eq_tool_names(&tools, &["shell", "dash/paginate"]);
|
||
assert_eq!(
|
||
tools[1],
|
||
OpenAiTool::Function(ResponsesApiTool {
|
||
name: "dash/paginate".to_string(),
|
||
parameters: JsonSchema::Object {
|
||
properties: BTreeMap::from([(
|
||
"page".to_string(),
|
||
JsonSchema::Number { description: None }
|
||
)]),
|
||
required: None,
|
||
additional_properties: None,
|
||
},
|
||
description: "Pagination".to_string(),
|
||
strict: false,
|
||
})
|
||
);
|
||
}
|
||
|
||
#[test]
|
||
fn test_mcp_tool_array_without_items_gets_default_string_items() {
|
||
let model_family = find_family_for_model("o3").expect("o3 should be a valid model family");
|
||
let config = ToolsConfig::new(
|
||
&model_family,
|
||
AskForApproval::Never,
|
||
SandboxPolicy::ReadOnly,
|
||
false,
|
||
);
|
||
|
||
let tools = get_openai_tools(
|
||
&config,
|
||
Some(HashMap::from([(
|
||
"dash/tags".to_string(),
|
||
mcp_types::Tool {
|
||
name: "tags".to_string(),
|
||
input_schema: ToolInputSchema {
|
||
properties: Some(serde_json::json!({
|
||
"tags": { "type": "array" }
|
||
})),
|
||
required: None,
|
||
r#type: "object".to_string(),
|
||
},
|
||
output_schema: None,
|
||
title: None,
|
||
annotations: None,
|
||
description: Some("Tags".to_string()),
|
||
},
|
||
)])),
|
||
);
|
||
|
||
assert_eq_tool_names(&tools, &["shell", "dash/tags"]);
|
||
assert_eq!(
|
||
tools[1],
|
||
OpenAiTool::Function(ResponsesApiTool {
|
||
name: "dash/tags".to_string(),
|
||
parameters: JsonSchema::Object {
|
||
properties: BTreeMap::from([(
|
||
"tags".to_string(),
|
||
JsonSchema::Array {
|
||
items: Box::new(JsonSchema::String { description: None }),
|
||
description: None
|
||
}
|
||
)]),
|
||
required: None,
|
||
additional_properties: None,
|
||
},
|
||
description: "Tags".to_string(),
|
||
strict: false,
|
||
})
|
||
);
|
||
}
|
||
|
||
#[test]
|
||
fn test_mcp_tool_anyof_defaults_to_string() {
|
||
let model_family = find_family_for_model("o3").expect("o3 should be a valid model family");
|
||
let config = ToolsConfig::new(
|
||
&model_family,
|
||
AskForApproval::Never,
|
||
SandboxPolicy::ReadOnly,
|
||
false,
|
||
);
|
||
|
||
let tools = get_openai_tools(
|
||
&config,
|
||
Some(HashMap::from([(
|
||
"dash/value".to_string(),
|
||
mcp_types::Tool {
|
||
name: "value".to_string(),
|
||
input_schema: ToolInputSchema {
|
||
properties: Some(serde_json::json!({
|
||
"value": { "anyOf": [ { "type": "string" }, { "type": "number" } ] }
|
||
})),
|
||
required: None,
|
||
r#type: "object".to_string(),
|
||
},
|
||
output_schema: None,
|
||
title: None,
|
||
annotations: None,
|
||
description: Some("AnyOf Value".to_string()),
|
||
},
|
||
)])),
|
||
);
|
||
|
||
assert_eq_tool_names(&tools, &["shell", "dash/value"]);
|
||
assert_eq!(
|
||
tools[1],
|
||
OpenAiTool::Function(ResponsesApiTool {
|
||
name: "dash/value".to_string(),
|
||
parameters: JsonSchema::Object {
|
||
properties: BTreeMap::from([(
|
||
"value".to_string(),
|
||
JsonSchema::String { description: None }
|
||
)]),
|
||
required: None,
|
||
additional_properties: None,
|
||
},
|
||
description: "AnyOf Value".to_string(),
|
||
strict: false,
|
||
})
|
||
);
|
||
}
|
||
}
|