Files
llmx/codex-rs/core/src/openai_tools.rs
Yaroslav f146981b73 feat: add JSON schema sanitization for MCP tools to ensure compatibil… (#1975)
…ity with internal JsonSchema enum

Closes: #1973 

Co-authored-by: Dylan Hurd <dylan.hurd@openai.com>
2025-08-10 17:57:39 -07:00

833 lines
30 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
use serde::Deserialize;
use serde::Serialize;
use serde_json::Value as JsonValue;
use serde_json::json;
use std::collections::BTreeMap;
use std::collections::HashMap;
use crate::model_family::ModelFamily;
use crate::plan_tool::PLAN_TOOL;
use crate::protocol::AskForApproval;
use crate::protocol::SandboxPolicy;
#[derive(Debug, Clone, Serialize, PartialEq)]
pub struct ResponsesApiTool {
pub(crate) name: String,
pub(crate) description: String,
/// TODO: Validation. When strict is set to true, the JSON schema,
/// `required` and `additional_properties` must be present. All fields in
/// `properties` must be present in `required`.
pub(crate) strict: bool,
pub(crate) parameters: JsonSchema,
}
/// When serialized as JSON, this produces a valid "Tool" in the OpenAI
/// Responses API.
#[derive(Debug, Clone, Serialize, PartialEq)]
#[serde(tag = "type")]
pub(crate) enum OpenAiTool {
#[serde(rename = "function")]
Function(ResponsesApiTool),
#[serde(rename = "local_shell")]
LocalShell {},
}
#[derive(Debug, Clone)]
pub enum ConfigShellToolType {
DefaultShell,
ShellWithRequest { sandbox_policy: SandboxPolicy },
LocalShell,
}
#[derive(Debug, Clone)]
pub struct ToolsConfig {
pub shell_type: ConfigShellToolType,
pub plan_tool: bool,
}
impl ToolsConfig {
pub fn new(
model_family: &ModelFamily,
approval_policy: AskForApproval,
sandbox_policy: SandboxPolicy,
include_plan_tool: bool,
) -> Self {
let mut shell_type = if model_family.uses_local_shell_tool {
ConfigShellToolType::LocalShell
} else {
ConfigShellToolType::DefaultShell
};
if matches!(approval_policy, AskForApproval::OnRequest) {
shell_type = ConfigShellToolType::ShellWithRequest {
sandbox_policy: sandbox_policy.clone(),
}
}
Self {
shell_type,
plan_tool: include_plan_tool,
}
}
}
/// Generic JSONSchema subset needed for our tool definitions
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
#[serde(tag = "type", rename_all = "lowercase")]
pub(crate) enum JsonSchema {
Boolean {
#[serde(skip_serializing_if = "Option::is_none")]
description: Option<String>,
},
String {
#[serde(skip_serializing_if = "Option::is_none")]
description: Option<String>,
},
/// MCP schema allows "number" | "integer" for Number
#[serde(alias = "integer")]
Number {
#[serde(skip_serializing_if = "Option::is_none")]
description: Option<String>,
},
Array {
items: Box<JsonSchema>,
#[serde(skip_serializing_if = "Option::is_none")]
description: Option<String>,
},
Object {
properties: BTreeMap<String, JsonSchema>,
#[serde(skip_serializing_if = "Option::is_none")]
required: Option<Vec<String>>,
#[serde(
rename = "additionalProperties",
skip_serializing_if = "Option::is_none"
)]
additional_properties: Option<bool>,
},
}
fn create_shell_tool() -> OpenAiTool {
let mut properties = BTreeMap::new();
properties.insert(
"command".to_string(),
JsonSchema::Array {
items: Box::new(JsonSchema::String { description: None }),
description: None,
},
);
properties.insert(
"workdir".to_string(),
JsonSchema::String { description: None },
);
properties.insert(
"timeout".to_string(),
JsonSchema::Number { description: None },
);
OpenAiTool::Function(ResponsesApiTool {
name: "shell".to_string(),
description: "Runs a shell command and returns its output".to_string(),
strict: false,
parameters: JsonSchema::Object {
properties,
required: Some(vec!["command".to_string()]),
additional_properties: Some(false),
},
})
}
fn create_shell_tool_for_sandbox(sandbox_policy: &SandboxPolicy) -> OpenAiTool {
let mut properties = BTreeMap::new();
properties.insert(
"command".to_string(),
JsonSchema::Array {
items: Box::new(JsonSchema::String { description: None }),
description: Some("The command to execute".to_string()),
},
);
properties.insert(
"workdir".to_string(),
JsonSchema::String {
description: Some("The working directory to execute the command in".to_string()),
},
);
properties.insert(
"timeout".to_string(),
JsonSchema::Number {
description: Some("The timeout for the command in milliseconds".to_string()),
},
);
if matches!(sandbox_policy, SandboxPolicy::WorkspaceWrite { .. }) {
properties.insert(
"with_escalated_permissions".to_string(),
JsonSchema::Boolean {
description: Some("Whether to request escalated permissions. Set to true if command needs to be run without sandbox restrictions".to_string()),
},
);
properties.insert(
"justification".to_string(),
JsonSchema::String {
description: Some("Only set if ask_for_escalated_permissions is true. 1-sentence explanation of why we want to run this command.".to_string()),
},
);
}
let description = match sandbox_policy {
SandboxPolicy::WorkspaceWrite {
network_access,
..
} => {
format!(
r#"
The shell tool is used to execute shell commands.
- When invoking the shell tool, your call will be running in a landlock sandbox, and some shell commands will require escalated privileges:
- Types of actions that require escalated privileges:
- Reading files outside the current directory
- Writing files outside the current directory, and protected folders like .git or .env{}
- Examples of commands that require escalated privileges:
- git commit
- npm install or pnpm install
- cargo build
- cargo test
- When invoking a command that will require escalated privileges:
- Provide the with_escalated_permissions parameter with the boolean value true
- Include a short, 1 sentence explanation for why we need to run with_escalated_permissions in the justification parameter."#,
if !network_access {
"\n - Commands that require network access\n"
} else {
""
}
)
}
SandboxPolicy::DangerFullAccess => {
"Runs a shell command and returns its output.".to_string()
}
SandboxPolicy::ReadOnly => {
r#"
The shell tool is used to execute shell commands.
- When invoking the shell tool, your call will be running in a landlock sandbox, and some shell commands (including apply_patch) will require escalated permissions:
- Types of actions that require escalated privileges:
- Reading files outside the current directory
- Writing files
- Applying patches
- Examples of commands that require escalated privileges:
- apply_patch
- git commit
- npm install or pnpm install
- cargo build
- cargo test
- When invoking a command that will require escalated privileges:
- Provide the with_escalated_permissions parameter with the boolean value true
- Include a short, 1 sentence explanation for why we need to run with_escalated_permissions in the justification parameter"#.to_string()
}
};
OpenAiTool::Function(ResponsesApiTool {
name: "shell".to_string(),
description,
strict: false,
parameters: JsonSchema::Object {
properties,
required: Some(vec!["command".to_string()]),
additional_properties: Some(false),
},
})
}
/// Returns JSON values that are compatible with Function Calling in the
/// Responses API:
/// https://platform.openai.com/docs/guides/function-calling?api-mode=responses
pub(crate) fn create_tools_json_for_responses_api(
tools: &Vec<OpenAiTool>,
) -> crate::error::Result<Vec<serde_json::Value>> {
let mut tools_json = Vec::new();
for tool in tools {
tools_json.push(serde_json::to_value(tool)?);
}
Ok(tools_json)
}
/// Returns JSON values that are compatible with Function Calling in the
/// Chat Completions API:
/// https://platform.openai.com/docs/guides/function-calling?api-mode=chat
pub(crate) fn create_tools_json_for_chat_completions_api(
tools: &Vec<OpenAiTool>,
) -> crate::error::Result<Vec<serde_json::Value>> {
// We start with the JSON for the Responses API and than rewrite it to match
// the chat completions tool call format.
let responses_api_tools_json = create_tools_json_for_responses_api(tools)?;
let tools_json = responses_api_tools_json
.into_iter()
.filter_map(|mut tool| {
if tool.get("type") != Some(&serde_json::Value::String("function".to_string())) {
return None;
}
if let Some(map) = tool.as_object_mut() {
// Remove "type" field as it is not needed in chat completions.
map.remove("type");
Some(json!({
"type": "function",
"function": map,
}))
} else {
None
}
})
.collect::<Vec<serde_json::Value>>();
Ok(tools_json)
}
pub(crate) fn mcp_tool_to_openai_tool(
fully_qualified_name: String,
tool: mcp_types::Tool,
) -> Result<ResponsesApiTool, serde_json::Error> {
let mcp_types::Tool {
description,
mut input_schema,
..
} = tool;
// OpenAI models mandate the "properties" field in the schema. The Agents
// SDK fixed this by inserting an empty object for "properties" if it is not
// already present https://github.com/openai/openai-agents-python/issues/449
// so here we do the same.
if input_schema.properties.is_none() {
input_schema.properties = Some(serde_json::Value::Object(serde_json::Map::new()));
}
// Serialize to a raw JSON value so we can sanitize schemas coming from MCP
// servers. Some servers omit the top-level or nested `type` in JSON
// Schemas (e.g. using enum/anyOf), or use unsupported variants like
// `integer`. Our internal JsonSchema is a small subset and requires
// `type`, so we coerce/sanitize here for compatibility.
let mut serialized_input_schema = serde_json::to_value(input_schema)?;
sanitize_json_schema(&mut serialized_input_schema);
let input_schema = serde_json::from_value::<JsonSchema>(serialized_input_schema)?;
Ok(ResponsesApiTool {
name: fully_qualified_name,
description: description.unwrap_or_default(),
strict: false,
parameters: input_schema,
})
}
/// Sanitize a JSON Schema (as serde_json::Value) so it can fit our limited
/// JsonSchema enum. This function:
/// - Ensures every schema object has a "type". If missing, infers it from
/// common keywords (properties => object, items => array, enum/const/format => string)
/// and otherwise defaults to "string".
/// - Fills required child fields (e.g. array items, object properties) with
/// permissive defaults when absent.
fn sanitize_json_schema(value: &mut JsonValue) {
match value {
JsonValue::Bool(_) => {
// JSON Schema boolean form: true/false. Coerce to an accept-all string.
*value = json!({ "type": "string" });
}
JsonValue::Array(arr) => {
for v in arr.iter_mut() {
sanitize_json_schema(v);
}
}
JsonValue::Object(map) => {
// First, recursively sanitize known nested schema holders
if let Some(props) = map.get_mut("properties") {
if let Some(props_map) = props.as_object_mut() {
for (_k, v) in props_map.iter_mut() {
sanitize_json_schema(v);
}
}
}
if let Some(items) = map.get_mut("items") {
sanitize_json_schema(items);
}
// Some schemas use oneOf/anyOf/allOf - sanitize their entries
for combiner in ["oneOf", "anyOf", "allOf", "prefixItems"] {
if let Some(v) = map.get_mut(combiner) {
sanitize_json_schema(v);
}
}
// Normalize/ensure type
let mut ty = map
.get("type")
.and_then(|v| v.as_str())
.map(|s| s.to_string());
// If type is an array (union), pick first supported; else leave to inference
if ty.is_none() {
if let Some(JsonValue::Array(types)) = map.get("type") {
for t in types {
if let Some(tt) = t.as_str() {
if matches!(
tt,
"object" | "array" | "string" | "number" | "integer" | "boolean"
) {
ty = Some(tt.to_string());
break;
}
}
}
}
}
// Infer type if still missing
if ty.is_none() {
if map.contains_key("properties")
|| map.contains_key("required")
|| map.contains_key("additionalProperties")
{
ty = Some("object".to_string());
} else if map.contains_key("items") || map.contains_key("prefixItems") {
ty = Some("array".to_string());
} else if map.contains_key("enum")
|| map.contains_key("const")
|| map.contains_key("format")
{
ty = Some("string".to_string());
} else if map.contains_key("minimum")
|| map.contains_key("maximum")
|| map.contains_key("exclusiveMinimum")
|| map.contains_key("exclusiveMaximum")
|| map.contains_key("multipleOf")
{
ty = Some("number".to_string());
}
}
// If we still couldn't infer, default to string
let ty = ty.unwrap_or_else(|| "string".to_string());
map.insert("type".to_string(), JsonValue::String(ty.to_string()));
// Ensure object schemas have properties map
if ty == "object" {
if !map.contains_key("properties") {
map.insert(
"properties".to_string(),
JsonValue::Object(serde_json::Map::new()),
);
}
// If additionalProperties is an object schema, sanitize it too.
// Leave booleans as-is, since JSON Schema allows boolean here.
if let Some(ap) = map.get_mut("additionalProperties") {
let is_bool = matches!(ap, JsonValue::Bool(_));
if !is_bool {
sanitize_json_schema(ap);
}
}
}
// Ensure array schemas have items
if ty == "array" && !map.contains_key("items") {
map.insert("items".to_string(), json!({ "type": "string" }));
}
}
_ => {}
}
}
/// Returns a list of OpenAiTools based on the provided config and MCP tools.
/// Note that the keys of mcp_tools should be fully qualified names. See
/// [`McpConnectionManager`] for more details.
pub(crate) fn get_openai_tools(
config: &ToolsConfig,
mcp_tools: Option<HashMap<String, mcp_types::Tool>>,
) -> Vec<OpenAiTool> {
let mut tools: Vec<OpenAiTool> = Vec::new();
match &config.shell_type {
ConfigShellToolType::DefaultShell => {
tools.push(create_shell_tool());
}
ConfigShellToolType::ShellWithRequest { sandbox_policy } => {
tools.push(create_shell_tool_for_sandbox(sandbox_policy));
}
ConfigShellToolType::LocalShell => {
tools.push(OpenAiTool::LocalShell {});
}
}
if config.plan_tool {
tools.push(PLAN_TOOL.clone());
}
if let Some(mcp_tools) = mcp_tools {
for (name, tool) in mcp_tools {
match mcp_tool_to_openai_tool(name.clone(), tool.clone()) {
Ok(converted_tool) => tools.push(OpenAiTool::Function(converted_tool)),
Err(e) => {
tracing::error!("Failed to convert {name:?} MCP tool to OpenAI tool: {e:?}");
}
}
}
}
tools
}
#[cfg(test)]
#[allow(clippy::expect_used)]
mod tests {
use crate::model_family::find_family_for_model;
use mcp_types::ToolInputSchema;
use pretty_assertions::assert_eq;
use super::*;
fn assert_eq_tool_names(tools: &[OpenAiTool], expected_names: &[&str]) {
let tool_names = tools
.iter()
.map(|tool| match tool {
OpenAiTool::Function(ResponsesApiTool { name, .. }) => name,
OpenAiTool::LocalShell {} => "local_shell",
})
.collect::<Vec<_>>();
assert_eq!(
tool_names.len(),
expected_names.len(),
"tool_name mismatch, {tool_names:?}, {expected_names:?}",
);
for (name, expected_name) in tool_names.iter().zip(expected_names.iter()) {
assert_eq!(
name, expected_name,
"tool_name mismatch, {name:?}, {expected_name:?}"
);
}
}
#[test]
fn test_get_openai_tools() {
let model_family = find_family_for_model("codex-mini-latest")
.expect("codex-mini-latest should be a valid model family");
let config = ToolsConfig::new(
&model_family,
AskForApproval::Never,
SandboxPolicy::ReadOnly,
true,
);
let tools = get_openai_tools(&config, Some(HashMap::new()));
assert_eq_tool_names(&tools, &["local_shell", "update_plan"]);
}
#[test]
fn test_get_openai_tools_default_shell() {
let model_family = find_family_for_model("o3").expect("o3 should be a valid model family");
let config = ToolsConfig::new(
&model_family,
AskForApproval::Never,
SandboxPolicy::ReadOnly,
true,
);
let tools = get_openai_tools(&config, Some(HashMap::new()));
assert_eq_tool_names(&tools, &["shell", "update_plan"]);
}
#[test]
fn test_get_openai_tools_mcp_tools() {
let model_family = find_family_for_model("o3").expect("o3 should be a valid model family");
let config = ToolsConfig::new(
&model_family,
AskForApproval::Never,
SandboxPolicy::ReadOnly,
false,
);
let tools = get_openai_tools(
&config,
Some(HashMap::from([(
"test_server/do_something_cool".to_string(),
mcp_types::Tool {
name: "do_something_cool".to_string(),
input_schema: ToolInputSchema {
properties: Some(serde_json::json!({
"string_argument": {
"type": "string",
},
"number_argument": {
"type": "number",
},
"object_argument": {
"type": "object",
"properties": {
"string_property": { "type": "string" },
"number_property": { "type": "number" },
},
"required": [
"string_property",
"number_property"
],
"additionalProperties": Some(false),
},
})),
required: None,
r#type: "object".to_string(),
},
output_schema: None,
title: None,
annotations: None,
description: Some("Do something cool".to_string()),
},
)])),
);
assert_eq_tool_names(&tools, &["shell", "test_server/do_something_cool"]);
assert_eq!(
tools[1],
OpenAiTool::Function(ResponsesApiTool {
name: "test_server/do_something_cool".to_string(),
parameters: JsonSchema::Object {
properties: BTreeMap::from([
(
"string_argument".to_string(),
JsonSchema::String { description: None }
),
(
"number_argument".to_string(),
JsonSchema::Number { description: None }
),
(
"object_argument".to_string(),
JsonSchema::Object {
properties: BTreeMap::from([
(
"string_property".to_string(),
JsonSchema::String { description: None }
),
(
"number_property".to_string(),
JsonSchema::Number { description: None }
),
]),
required: Some(vec![
"string_property".to_string(),
"number_property".to_string(),
]),
additional_properties: Some(false),
},
),
]),
required: None,
additional_properties: None,
},
description: "Do something cool".to_string(),
strict: false,
})
);
}
#[test]
fn test_mcp_tool_property_missing_type_defaults_to_string() {
let model_family = find_family_for_model("o3").expect("o3 should be a valid model family");
let config = ToolsConfig::new(
&model_family,
AskForApproval::Never,
SandboxPolicy::ReadOnly,
false,
);
let tools = get_openai_tools(
&config,
Some(HashMap::from([(
"dash/search".to_string(),
mcp_types::Tool {
name: "search".to_string(),
input_schema: ToolInputSchema {
properties: Some(serde_json::json!({
"query": {
"description": "search query"
}
})),
required: None,
r#type: "object".to_string(),
},
output_schema: None,
title: None,
annotations: None,
description: Some("Search docs".to_string()),
},
)])),
);
assert_eq_tool_names(&tools, &["shell", "dash/search"]);
assert_eq!(
tools[1],
OpenAiTool::Function(ResponsesApiTool {
name: "dash/search".to_string(),
parameters: JsonSchema::Object {
properties: BTreeMap::from([(
"query".to_string(),
JsonSchema::String {
description: Some("search query".to_string())
}
)]),
required: None,
additional_properties: None,
},
description: "Search docs".to_string(),
strict: false,
})
);
}
#[test]
fn test_mcp_tool_integer_normalized_to_number() {
let model_family = find_family_for_model("o3").expect("o3 should be a valid model family");
let config = ToolsConfig::new(
&model_family,
AskForApproval::Never,
SandboxPolicy::ReadOnly,
false,
);
let tools = get_openai_tools(
&config,
Some(HashMap::from([(
"dash/paginate".to_string(),
mcp_types::Tool {
name: "paginate".to_string(),
input_schema: ToolInputSchema {
properties: Some(serde_json::json!({
"page": { "type": "integer" }
})),
required: None,
r#type: "object".to_string(),
},
output_schema: None,
title: None,
annotations: None,
description: Some("Pagination".to_string()),
},
)])),
);
assert_eq_tool_names(&tools, &["shell", "dash/paginate"]);
assert_eq!(
tools[1],
OpenAiTool::Function(ResponsesApiTool {
name: "dash/paginate".to_string(),
parameters: JsonSchema::Object {
properties: BTreeMap::from([(
"page".to_string(),
JsonSchema::Number { description: None }
)]),
required: None,
additional_properties: None,
},
description: "Pagination".to_string(),
strict: false,
})
);
}
#[test]
fn test_mcp_tool_array_without_items_gets_default_string_items() {
let model_family = find_family_for_model("o3").expect("o3 should be a valid model family");
let config = ToolsConfig::new(
&model_family,
AskForApproval::Never,
SandboxPolicy::ReadOnly,
false,
);
let tools = get_openai_tools(
&config,
Some(HashMap::from([(
"dash/tags".to_string(),
mcp_types::Tool {
name: "tags".to_string(),
input_schema: ToolInputSchema {
properties: Some(serde_json::json!({
"tags": { "type": "array" }
})),
required: None,
r#type: "object".to_string(),
},
output_schema: None,
title: None,
annotations: None,
description: Some("Tags".to_string()),
},
)])),
);
assert_eq_tool_names(&tools, &["shell", "dash/tags"]);
assert_eq!(
tools[1],
OpenAiTool::Function(ResponsesApiTool {
name: "dash/tags".to_string(),
parameters: JsonSchema::Object {
properties: BTreeMap::from([(
"tags".to_string(),
JsonSchema::Array {
items: Box::new(JsonSchema::String { description: None }),
description: None
}
)]),
required: None,
additional_properties: None,
},
description: "Tags".to_string(),
strict: false,
})
);
}
#[test]
fn test_mcp_tool_anyof_defaults_to_string() {
let model_family = find_family_for_model("o3").expect("o3 should be a valid model family");
let config = ToolsConfig::new(
&model_family,
AskForApproval::Never,
SandboxPolicy::ReadOnly,
false,
);
let tools = get_openai_tools(
&config,
Some(HashMap::from([(
"dash/value".to_string(),
mcp_types::Tool {
name: "value".to_string(),
input_schema: ToolInputSchema {
properties: Some(serde_json::json!({
"value": { "anyOf": [ { "type": "string" }, { "type": "number" } ] }
})),
required: None,
r#type: "object".to_string(),
},
output_schema: None,
title: None,
annotations: None,
description: Some("AnyOf Value".to_string()),
},
)])),
);
assert_eq_tool_names(&tools, &["shell", "dash/value"]);
assert_eq!(
tools[1],
OpenAiTool::Function(ResponsesApiTool {
name: "dash/value".to_string(),
parameters: JsonSchema::Object {
properties: BTreeMap::from([(
"value".to_string(),
JsonSchema::String { description: None }
)]),
required: None,
additional_properties: None,
},
description: "AnyOf Value".to_string(),
strict: false,
})
);
}
}