Files
llmx/codex-rs/core/src/exec.rs
iceweasel-oai 87cce88f48 Windows Sandbox - Alpha version (#4905)
- Added the new codex-windows-sandbox crate that builds both a library
entry point (run_windows_sandbox_capture) and a CLI executable to launch
commands inside a Windows restricted-token sandbox, including ACL
management, capability SID provisioning, network lockdown, and output
capture
(windows-sandbox-rs/src/lib.rs:167, windows-sandbox-rs/src/main.rs:54).
- Introduced the experimental WindowsSandbox feature flag and wiring so
Windows builds can opt into the sandbox:
SandboxType::WindowsRestrictedToken, the in-process execution path, and
platform sandbox selection now honor the flag (core/src/features.rs:47,
core/src/config.rs:1224, core/src/safety.rs:19,
core/src/sandboxing/mod.rs:69, core/src/exec.rs:79,
core/src/exec.rs:172).
- Updated workspace metadata to include the new crate and its
Windows-specific dependencies so the core crate can link against it
(codex-rs/
    Cargo.toml:91, core/Cargo.toml:86).
- Added a PowerShell bootstrap script that installs the Windows
toolchain, required CLI utilities, and builds the workspace to ease
development
    on the platform (scripts/setup-windows.ps1:1).
- Landed a Python smoke-test suite that exercises
read-only/workspace-write policies, ACL behavior, and network denial for
the Windows sandbox
    binary (windows-sandbox-rs/sandbox_smoketests.py:1).
2025-10-30 15:51:57 -07:00

683 lines
19 KiB
Rust

#[cfg(unix)]
use std::os::unix::process::ExitStatusExt;
use std::collections::HashMap;
use std::io;
use std::path::Path;
use std::path::PathBuf;
use std::process::ExitStatus;
use std::time::Duration;
use std::time::Instant;
use async_channel::Sender;
use tokio::io::AsyncRead;
use tokio::io::AsyncReadExt;
use tokio::io::BufReader;
use tokio::process::Child;
use crate::error::CodexErr;
use crate::error::Result;
use crate::error::SandboxErr;
use crate::protocol::Event;
use crate::protocol::EventMsg;
use crate::protocol::ExecCommandOutputDeltaEvent;
use crate::protocol::ExecOutputStream;
use crate::protocol::SandboxPolicy;
use crate::sandboxing::CommandSpec;
use crate::sandboxing::ExecEnv;
use crate::sandboxing::SandboxManager;
use crate::spawn::StdioPolicy;
use crate::spawn::spawn_child_async;
const DEFAULT_TIMEOUT_MS: u64 = 10_000;
// Hardcode these since it does not seem worth including the libc crate just
// for these.
const SIGKILL_CODE: i32 = 9;
const TIMEOUT_CODE: i32 = 64;
const EXIT_CODE_SIGNAL_BASE: i32 = 128; // conventional shell: 128 + signal
const EXEC_TIMEOUT_EXIT_CODE: i32 = 124; // conventional timeout exit code
// I/O buffer sizing
const READ_CHUNK_SIZE: usize = 8192; // bytes per read
const AGGREGATE_BUFFER_INITIAL_CAPACITY: usize = 8 * 1024; // 8 KiB
/// Limit the number of ExecCommandOutputDelta events emitted per exec call.
/// Aggregation still collects full output; only the live event stream is capped.
pub(crate) const MAX_EXEC_OUTPUT_DELTAS_PER_CALL: usize = 10_000;
#[derive(Clone, Debug)]
pub struct ExecParams {
pub command: Vec<String>,
pub cwd: PathBuf,
pub timeout_ms: Option<u64>,
pub env: HashMap<String, String>,
pub with_escalated_permissions: Option<bool>,
pub justification: Option<String>,
pub arg0: Option<String>,
}
impl ExecParams {
pub fn timeout_duration(&self) -> Duration {
Duration::from_millis(self.timeout_ms.unwrap_or(DEFAULT_TIMEOUT_MS))
}
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum SandboxType {
None,
/// Only available on macOS.
MacosSeatbelt,
/// Only available on Linux.
LinuxSeccomp,
/// Only available on Windows.
WindowsRestrictedToken,
}
#[derive(Clone)]
pub struct StdoutStream {
pub sub_id: String,
pub call_id: String,
pub tx_event: Sender<Event>,
}
pub async fn process_exec_tool_call(
params: ExecParams,
sandbox_type: SandboxType,
sandbox_policy: &SandboxPolicy,
sandbox_cwd: &Path,
codex_linux_sandbox_exe: &Option<PathBuf>,
stdout_stream: Option<StdoutStream>,
) -> Result<ExecToolCallOutput> {
let ExecParams {
command,
cwd,
timeout_ms,
env,
with_escalated_permissions,
justification,
arg0: _,
} = params;
let (program, args) = command.split_first().ok_or_else(|| {
CodexErr::Io(io::Error::new(
io::ErrorKind::InvalidInput,
"command args are empty",
))
})?;
let spec = CommandSpec {
program: program.clone(),
args: args.to_vec(),
cwd,
env,
timeout_ms,
with_escalated_permissions,
justification,
};
let manager = SandboxManager::new();
let exec_env = manager
.transform(
&spec,
sandbox_policy,
sandbox_type,
sandbox_cwd,
codex_linux_sandbox_exe.as_ref(),
)
.map_err(CodexErr::from)?;
// Route through the sandboxing module for a single, unified execution path.
crate::sandboxing::execute_env(&exec_env, sandbox_policy, stdout_stream).await
}
pub(crate) async fn execute_exec_env(
env: ExecEnv,
sandbox_policy: &SandboxPolicy,
stdout_stream: Option<StdoutStream>,
) -> Result<ExecToolCallOutput> {
let ExecEnv {
command,
cwd,
env,
timeout_ms,
sandbox,
with_escalated_permissions,
justification,
arg0,
} = env;
let params = ExecParams {
command,
cwd,
timeout_ms,
env,
with_escalated_permissions,
justification,
arg0,
};
let start = Instant::now();
let raw_output_result = exec(params, sandbox, sandbox_policy, stdout_stream).await;
let duration = start.elapsed();
finalize_exec_result(raw_output_result, sandbox, duration)
}
#[cfg(target_os = "windows")]
async fn exec_windows_sandbox(
params: ExecParams,
sandbox_policy: &SandboxPolicy,
) -> Result<RawExecToolCallOutput> {
use codex_windows_sandbox::run_windows_sandbox_capture;
let ExecParams {
command,
cwd,
env,
timeout_ms,
..
} = params;
let policy_str = match sandbox_policy {
SandboxPolicy::DangerFullAccess => "workspace-write",
SandboxPolicy::ReadOnly => "read-only",
SandboxPolicy::WorkspaceWrite { .. } => "workspace-write",
};
let sandbox_cwd = cwd.clone();
let spawn_res = tokio::task::spawn_blocking(move || {
run_windows_sandbox_capture(policy_str, &sandbox_cwd, command, &cwd, env, timeout_ms)
})
.await;
let capture = match spawn_res {
Ok(Ok(v)) => v,
Ok(Err(err)) => {
return Err(CodexErr::Io(io::Error::other(format!(
"windows sandbox: {err}"
))));
}
Err(join_err) => {
return Err(CodexErr::Io(io::Error::other(format!(
"windows sandbox join error: {join_err}"
))));
}
};
let exit_status = synthetic_exit_status(capture.exit_code);
let stdout = StreamOutput {
text: capture.stdout,
truncated_after_lines: None,
};
let stderr = StreamOutput {
text: capture.stderr,
truncated_after_lines: None,
};
// Best-effort aggregate: stdout then stderr
let mut aggregated = Vec::with_capacity(stdout.text.len() + stderr.text.len());
append_all(&mut aggregated, &stdout.text);
append_all(&mut aggregated, &stderr.text);
let aggregated_output = StreamOutput {
text: aggregated,
truncated_after_lines: None,
};
Ok(RawExecToolCallOutput {
exit_status,
stdout,
stderr,
aggregated_output,
timed_out: capture.timed_out,
})
}
fn finalize_exec_result(
raw_output_result: std::result::Result<RawExecToolCallOutput, CodexErr>,
sandbox_type: SandboxType,
duration: Duration,
) -> Result<ExecToolCallOutput> {
match raw_output_result {
Ok(raw_output) => {
#[allow(unused_mut)]
let mut timed_out = raw_output.timed_out;
#[cfg(target_family = "unix")]
{
if let Some(signal) = raw_output.exit_status.signal() {
if signal == TIMEOUT_CODE {
timed_out = true;
} else {
return Err(CodexErr::Sandbox(SandboxErr::Signal(signal)));
}
}
}
let mut exit_code = raw_output.exit_status.code().unwrap_or(-1);
if timed_out {
exit_code = EXEC_TIMEOUT_EXIT_CODE;
}
let stdout = raw_output.stdout.from_utf8_lossy();
let stderr = raw_output.stderr.from_utf8_lossy();
let aggregated_output = raw_output.aggregated_output.from_utf8_lossy();
let exec_output = ExecToolCallOutput {
exit_code,
stdout,
stderr,
aggregated_output,
duration,
timed_out,
};
if timed_out {
return Err(CodexErr::Sandbox(SandboxErr::Timeout {
output: Box::new(exec_output),
}));
}
if is_likely_sandbox_denied(sandbox_type, &exec_output) {
return Err(CodexErr::Sandbox(SandboxErr::Denied {
output: Box::new(exec_output),
}));
}
Ok(exec_output)
}
Err(err) => {
tracing::error!("exec error: {err}");
Err(err)
}
}
}
pub(crate) mod errors {
use super::CodexErr;
use crate::sandboxing::SandboxTransformError;
impl From<SandboxTransformError> for CodexErr {
fn from(err: SandboxTransformError) -> Self {
match err {
SandboxTransformError::MissingLinuxSandboxExecutable => {
CodexErr::LandlockSandboxExecutableNotProvided
}
}
}
}
}
/// We don't have a fully deterministic way to tell if our command failed
/// because of the sandbox - a command in the user's zshrc file might hit an
/// error, but the command itself might fail or succeed for other reasons.
/// For now, we conservatively check for well known command failure exit codes and
/// also look for common sandbox denial keywords in the command output.
pub(crate) fn is_likely_sandbox_denied(
sandbox_type: SandboxType,
exec_output: &ExecToolCallOutput,
) -> bool {
if sandbox_type == SandboxType::None || exec_output.exit_code == 0 {
return false;
}
// Quick rejects: well-known non-sandbox shell exit codes
// 2: misuse of shell builtins
// 126: permission denied
// 127: command not found
const SANDBOX_DENIED_KEYWORDS: [&str; 7] = [
"operation not permitted",
"permission denied",
"read-only file system",
"seccomp",
"sandbox",
"landlock",
"failed to write file",
];
let has_sandbox_keyword = [
&exec_output.stderr.text,
&exec_output.stdout.text,
&exec_output.aggregated_output.text,
]
.into_iter()
.any(|section| {
let lower = section.to_lowercase();
SANDBOX_DENIED_KEYWORDS
.iter()
.any(|needle| lower.contains(needle))
});
if has_sandbox_keyword {
return true;
}
const QUICK_REJECT_EXIT_CODES: [i32; 3] = [2, 126, 127];
if QUICK_REJECT_EXIT_CODES.contains(&exec_output.exit_code) {
return false;
}
#[cfg(unix)]
{
const SIGSYS_CODE: i32 = libc::SIGSYS;
if sandbox_type == SandboxType::LinuxSeccomp
&& exec_output.exit_code == EXIT_CODE_SIGNAL_BASE + SIGSYS_CODE
{
return true;
}
}
false
}
#[derive(Debug, Clone)]
pub struct StreamOutput<T: Clone> {
pub text: T,
pub truncated_after_lines: Option<u32>,
}
#[derive(Debug)]
struct RawExecToolCallOutput {
pub exit_status: ExitStatus,
pub stdout: StreamOutput<Vec<u8>>,
pub stderr: StreamOutput<Vec<u8>>,
pub aggregated_output: StreamOutput<Vec<u8>>,
pub timed_out: bool,
}
impl StreamOutput<String> {
pub fn new(text: String) -> Self {
Self {
text,
truncated_after_lines: None,
}
}
}
impl StreamOutput<Vec<u8>> {
pub fn from_utf8_lossy(&self) -> StreamOutput<String> {
StreamOutput {
text: String::from_utf8_lossy(&self.text).to_string(),
truncated_after_lines: self.truncated_after_lines,
}
}
}
#[inline]
fn append_all(dst: &mut Vec<u8>, src: &[u8]) {
dst.extend_from_slice(src);
}
#[derive(Clone, Debug)]
pub struct ExecToolCallOutput {
pub exit_code: i32,
pub stdout: StreamOutput<String>,
pub stderr: StreamOutput<String>,
pub aggregated_output: StreamOutput<String>,
pub duration: Duration,
pub timed_out: bool,
}
#[cfg_attr(not(target_os = "windows"), allow(unused_variables))]
async fn exec(
params: ExecParams,
sandbox: SandboxType,
sandbox_policy: &SandboxPolicy,
stdout_stream: Option<StdoutStream>,
) -> Result<RawExecToolCallOutput> {
#[cfg(target_os = "windows")]
if sandbox == SandboxType::WindowsRestrictedToken {
return exec_windows_sandbox(params, sandbox_policy).await;
}
let timeout = params.timeout_duration();
let ExecParams {
command,
cwd,
env,
arg0,
..
} = params;
let (program, args) = command.split_first().ok_or_else(|| {
CodexErr::Io(io::Error::new(
io::ErrorKind::InvalidInput,
"command args are empty",
))
})?;
let arg0_ref = arg0.as_deref();
let child = spawn_child_async(
PathBuf::from(program),
args.into(),
arg0_ref,
cwd,
sandbox_policy,
StdioPolicy::RedirectForShellTool,
env,
)
.await?;
consume_truncated_output(child, timeout, stdout_stream).await
}
/// Consumes the output of a child process, truncating it so it is suitable for
/// use as the output of a `shell` tool call. Also enforces specified timeout.
async fn consume_truncated_output(
mut child: Child,
timeout: Duration,
stdout_stream: Option<StdoutStream>,
) -> Result<RawExecToolCallOutput> {
// Both stdout and stderr were configured with `Stdio::piped()`
// above, therefore `take()` should normally return `Some`. If it doesn't
// we treat it as an exceptional I/O error
let stdout_reader = child.stdout.take().ok_or_else(|| {
CodexErr::Io(io::Error::other(
"stdout pipe was unexpectedly not available",
))
})?;
let stderr_reader = child.stderr.take().ok_or_else(|| {
CodexErr::Io(io::Error::other(
"stderr pipe was unexpectedly not available",
))
})?;
let (agg_tx, agg_rx) = async_channel::unbounded::<Vec<u8>>();
let stdout_handle = tokio::spawn(read_capped(
BufReader::new(stdout_reader),
stdout_stream.clone(),
false,
Some(agg_tx.clone()),
));
let stderr_handle = tokio::spawn(read_capped(
BufReader::new(stderr_reader),
stdout_stream.clone(),
true,
Some(agg_tx.clone()),
));
let (exit_status, timed_out) = tokio::select! {
result = tokio::time::timeout(timeout, child.wait()) => {
match result {
Ok(status_result) => {
let exit_status = status_result?;
(exit_status, false)
}
Err(_) => {
// timeout
child.start_kill()?;
// Debatable whether `child.wait().await` should be called here.
(synthetic_exit_status(EXIT_CODE_SIGNAL_BASE + TIMEOUT_CODE), true)
}
}
}
_ = tokio::signal::ctrl_c() => {
child.start_kill()?;
(synthetic_exit_status(EXIT_CODE_SIGNAL_BASE + SIGKILL_CODE), false)
}
};
let stdout = stdout_handle.await??;
let stderr = stderr_handle.await??;
drop(agg_tx);
let mut combined_buf = Vec::with_capacity(AGGREGATE_BUFFER_INITIAL_CAPACITY);
while let Ok(chunk) = agg_rx.recv().await {
append_all(&mut combined_buf, &chunk);
}
let aggregated_output = StreamOutput {
text: combined_buf,
truncated_after_lines: None,
};
Ok(RawExecToolCallOutput {
exit_status,
stdout,
stderr,
aggregated_output,
timed_out,
})
}
async fn read_capped<R: AsyncRead + Unpin + Send + 'static>(
mut reader: R,
stream: Option<StdoutStream>,
is_stderr: bool,
aggregate_tx: Option<Sender<Vec<u8>>>,
) -> io::Result<StreamOutput<Vec<u8>>> {
let mut buf = Vec::with_capacity(AGGREGATE_BUFFER_INITIAL_CAPACITY);
let mut tmp = [0u8; READ_CHUNK_SIZE];
let mut emitted_deltas: usize = 0;
// No caps: append all bytes
loop {
let n = reader.read(&mut tmp).await?;
if n == 0 {
break;
}
if let Some(stream) = &stream
&& emitted_deltas < MAX_EXEC_OUTPUT_DELTAS_PER_CALL
{
let chunk = tmp[..n].to_vec();
let msg = EventMsg::ExecCommandOutputDelta(ExecCommandOutputDeltaEvent {
call_id: stream.call_id.clone(),
stream: if is_stderr {
ExecOutputStream::Stderr
} else {
ExecOutputStream::Stdout
},
chunk,
});
let event = Event {
id: stream.sub_id.clone(),
msg,
};
#[allow(clippy::let_unit_value)]
let _ = stream.tx_event.send(event).await;
emitted_deltas += 1;
}
if let Some(tx) = &aggregate_tx {
let _ = tx.send(tmp[..n].to_vec()).await;
}
append_all(&mut buf, &tmp[..n]);
// Continue reading to EOF to avoid back-pressure
}
Ok(StreamOutput {
text: buf,
truncated_after_lines: None,
})
}
#[cfg(unix)]
fn synthetic_exit_status(code: i32) -> ExitStatus {
use std::os::unix::process::ExitStatusExt;
std::process::ExitStatus::from_raw(code)
}
#[cfg(windows)]
fn synthetic_exit_status(code: i32) -> ExitStatus {
use std::os::windows::process::ExitStatusExt;
// On Windows the raw status is a u32. Use a direct cast to avoid
// panicking on negative i32 values produced by prior narrowing casts.
std::process::ExitStatus::from_raw(code as u32)
}
#[cfg(test)]
mod tests {
use super::*;
use std::time::Duration;
fn make_exec_output(
exit_code: i32,
stdout: &str,
stderr: &str,
aggregated: &str,
) -> ExecToolCallOutput {
ExecToolCallOutput {
exit_code,
stdout: StreamOutput::new(stdout.to_string()),
stderr: StreamOutput::new(stderr.to_string()),
aggregated_output: StreamOutput::new(aggregated.to_string()),
duration: Duration::from_millis(1),
timed_out: false,
}
}
#[test]
fn sandbox_detection_requires_keywords() {
let output = make_exec_output(1, "", "", "");
assert!(!is_likely_sandbox_denied(
SandboxType::LinuxSeccomp,
&output
));
}
#[test]
fn sandbox_detection_identifies_keyword_in_stderr() {
let output = make_exec_output(1, "", "Operation not permitted", "");
assert!(is_likely_sandbox_denied(SandboxType::LinuxSeccomp, &output));
}
#[test]
fn sandbox_detection_respects_quick_reject_exit_codes() {
let output = make_exec_output(127, "", "command not found", "");
assert!(!is_likely_sandbox_denied(
SandboxType::LinuxSeccomp,
&output
));
}
#[test]
fn sandbox_detection_ignores_non_sandbox_mode() {
let output = make_exec_output(1, "", "Operation not permitted", "");
assert!(!is_likely_sandbox_denied(SandboxType::None, &output));
}
#[test]
fn sandbox_detection_uses_aggregated_output() {
let output = make_exec_output(
101,
"",
"",
"cargo failed: Read-only file system when writing target",
);
assert!(is_likely_sandbox_denied(
SandboxType::MacosSeatbelt,
&output
));
}
#[cfg(unix)]
#[test]
fn sandbox_detection_flags_sigsys_exit_code() {
let exit_code = EXIT_CODE_SIGNAL_BASE + libc::SIGSYS;
let output = make_exec_output(exit_code, "", "", "");
assert!(is_likely_sandbox_denied(SandboxType::LinuxSeccomp, &output));
}
}