Commit Graph

11 Commits

Author SHA1 Message Date
Dylan
725dd6be6a [approval_policy] Add OnRequest approval_policy (#1865)
## Summary
A split-up PR of #1763 , stacked on top of a tools refactor #1858 to
make the change clearer. From the previous summary:

> Let's try something new: tell the model about the sandbox, and let it
decide when it will need to break the sandbox. Some local testing
suggests that it works pretty well with zero iteration on the prompt!

## Testing
- [x] Added unit tests
- [x] Tested locally and it appears to work smoothly!
2025-08-05 20:44:20 -07:00
Michael Bolin
06c786b2da fix: ensure PatchApplyBeginEvent and PatchApplyEndEvent are dispatched reliably (#1760)
This is a follow-up to https://github.com/openai/codex/pull/1705, as
that PR inadvertently lost the logic where `PatchApplyBeginEvent` and
`PatchApplyEndEvent` events were sent when patches were auto-approved.

Though as part of this fix, I believe this also makes an important
safety fix to `assess_patch_safety()`, as there was a case that returned
`SandboxType::None`, which arguably is the thing we were trying to avoid
in #1705.

On a high level, we want there to be only one codepath where
`apply_patch` happens, which should be unified with the patch to run
`exec`, in general, so that sandboxing is applied consistently for both
cases.

Prior to this change, `apply_patch()` in `core` would either:

* exit early, delegating to `exec()` to shell out to `apply_patch` using
the appropriate sandbox
* proceed to run the logic for `apply_patch` in memory


549846b29a/codex-rs/core/src/apply_patch.rs (L61-L63)

In this implementation, only the latter would dispatch
`PatchApplyBeginEvent` and `PatchApplyEndEvent`, though the former would
dispatch `ExecCommandBeginEvent` and `ExecCommandEndEvent` for the
`apply_patch` call (or, more specifically, the `codex
--codex-run-as-apply-patch PATCH` call).

To unify things in this PR, we:

* Eliminate the back half of the `apply_patch()` function, and instead
have it also return with `DelegateToExec`, though we add an extra field
to the return value, `user_explicitly_approved_this_action`.
* In `codex.rs` where we process `DelegateToExec`, we use
`SandboxType::None` when `user_explicitly_approved_this_action` is
`true`. This means **we no longer run the apply_patch logic in memory**,
as we always `exec()`. (Note this is what allowed us to delete so much
code in `apply_patch.rs`.)
* In `codex.rs`, we further update `notify_exec_command_begin()` and
`notify_exec_command_end()` to take additional fields to determine what
type of notification to send: `ExecCommand` or `PatchApply`.

Admittedly, this PR also drops some of the functionality about giving
the user the opportunity to expand the set of writable roots as part of
approving the `apply_patch` command. I'm not sure how much that was
used, and we should probably rethink how that works as we are currently
tidying up the protocol to the TUI, in general.
2025-07-31 11:13:57 -07:00
Michael Bolin
221ebfcccc fix: run apply_patch calls through the sandbox (#1705)
Building on the work of https://github.com/openai/codex/pull/1702, this
changes how a shell call to `apply_patch` is handled.

Previously, a shell call to `apply_patch` was always handled in-process,
never leveraging a sandbox. To determine whether the `apply_patch`
operation could be auto-approved, the
`is_write_patch_constrained_to_writable_paths()` function would check if
all the paths listed in the paths were writable. If so, the agent would
apply the changes listed in the patch.

Unfortunately, this approach afforded a loophole: symlinks!

* For a soft link, we could fix this issue by tracing the link and
checking whether the target is in the set of writable paths, however...
* ...For a hard link, things are not as simple. We can run `stat FILE`
to see if the number of links is greater than 1, but then we would have
to do something potentially expensive like `find . -inum <inode_number>`
to find the other paths for `FILE`. Further, even if this worked, this
approach runs the risk of a
[TOCTOU](https://en.wikipedia.org/wiki/Time-of-check_to_time-of-use)
race condition, so it is not robust.

The solution, implemented in this PR, is to take the virtual execution
of the `apply_patch` CLI into an _actual_ execution using `codex
--codex-run-as-apply-patch PATCH`, which we can run under the sandbox
the user specified, just like any other `shell` call.

This, of course, assumes that the sandbox prevents writing through
symlinks as a mechanism to write to folders that are not in the writable
set configured by the sandbox. I verified this by testing the following
on both Mac and Linux:

```shell
#!/usr/bin/env bash
set -euo pipefail

# Can running a command in SANDBOX_DIR write a file in EXPLOIT_DIR?

# Codex is run in SANDBOX_DIR, so writes should be constrianed to this directory.
SANDBOX_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)
# EXPLOIT_DIR is outside of SANDBOX_DIR, so let's see if we can write to it.
EXPLOIT_DIR=$(mktemp -d -p "$HOME" sandboxtesttemp.XXXXXX)

echo "SANDBOX_DIR: $SANDBOX_DIR"
echo "EXPLOIT_DIR: $EXPLOIT_DIR"

cleanup() {
  # Only remove if it looks sane and still exists
  [[ -n "${SANDBOX_DIR:-}" && -d "$SANDBOX_DIR" ]] && rm -rf -- "$SANDBOX_DIR"
  [[ -n "${EXPLOIT_DIR:-}" && -d "$EXPLOIT_DIR" ]] && rm -rf -- "$EXPLOIT_DIR"
}

trap cleanup EXIT

echo "I am the original content" > "${EXPLOIT_DIR}/original.txt"

# Drop the -s to test hard links.
ln -s "${EXPLOIT_DIR}/original.txt" "${SANDBOX_DIR}/link-to-original.txt"

cat "${SANDBOX_DIR}/link-to-original.txt"

if [[ "$(uname)" == "Linux" ]]; then
    SANDBOX_SUBCOMMAND=landlock
else
    SANDBOX_SUBCOMMAND=seatbelt
fi

# Attempt the exploit
cd "${SANDBOX_DIR}"

codex debug "${SANDBOX_SUBCOMMAND}" bash -lc "echo pwned > ./link-to-original.txt" || true

cat "${EXPLOIT_DIR}/original.txt"
```

Admittedly, this change merits a proper integration test, but I think I
will have to do that in a follow-up PR.
2025-07-30 16:45:08 -07:00
Michael Bolin
50924101d2 feat: add --dangerously-bypass-approvals-and-sandbox (#1384)
This PR reworks `assess_command_safety()` so that the combination of
`AskForApproval::Never` and `SandboxPolicy::DangerFullAccess` ensures
that commands are run without _any_ sandbox and the user should never be
prompted. In turn, it adds support for a new
`--dangerously-bypass-approvals-and-sandbox` flag (that cannot be used
with `--approval-policy` or `--full-auto`) that sets both of those
options.

Fixes https://github.com/openai/codex/issues/1254
2025-06-25 12:36:10 -07:00
Michael Bolin
72082164c1 chore: rename AskForApproval::UnlessAllowListed to AskForApproval::UnlessTrusted (#1385)
We could just rename to `Untrusted` instead of `UnlessTrusted`, but I
think `AskForApproval::UnlessTrusted` reads a bit better.
2025-06-25 12:26:13 -07:00
Michael Bolin
86d5a9d80d chore: rename unless-allow-listed to untrusted (#1378)
For the `approval_policy` config option, renames `unless-allow-listed`
to `untrusted`. In general, when it comes to exec'ing commands, I think
"trusted" is a more accurate term than "safe."

Also drops the `AskForApproval::AutoEdit` variant, as we were not really
making use of it, anyway.

Fixes https://github.com/openai/codex/issues/1250.


---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/1378).
* #1379
* __->__ #1378
2025-06-24 22:19:21 -07:00
Michael Bolin
a9adb4175c fix: enable clippy on tests (#870)
https://github.com/openai/codex/pull/855 added the clippy warning to
disallow `unwrap()`, but apparently we were not verifying that tests
were "clippy clean" in CI, so I ended up with a lot of local errors in
VS Code.

This turns on the check in CI and fixes the offenders.
2025-05-08 16:02:56 -07:00
Michael Bolin
5d924d44cf fix: ensure apply_patch resolves relative paths against workdir or project cwd (#810)
https://github.com/openai/codex/pull/800 kicked off some work to be more
disciplined about honoring the `cwd` param passed in rather than
assuming `std::env::current_dir()` as the `cwd`. As part of this, we
need to ensure `apply_patch` calls honor the appropriate `cwd` as well,
which is significant if the paths in the `apply_patch` arg are not
absolute paths themselves. Failing that:

- The `apply_patch` function call can contain an optional`workdir`
param, so:
- If specified and is an absolute path, it should be used to resolve
relative paths
- If specified and is a relative path, should be resolved against
`Config.cwd` and then any relative paths will be resolved against the
result
- If `workdir` is not specified on the function call, relative paths
should be resolved against `Config.cwd`

Note that we had a similar issue in the TypeScript CLI that was fixed in
https://github.com/openai/codex/pull/556.

As part of the fix, this PR introduces `ApplyPatchAction` so clients can
deal with that instead of the raw `HashMap<PathBuf,
ApplyPatchFileChange>`. This enables us to enforce, by construction,
that all paths contained in the `ApplyPatchAction` are absolute paths.
2025-05-04 12:32:51 -07:00
Michael Bolin
421e159888 feat: make cwd a required field of Config so we stop assuming std::env::current_dir() in a session (#800)
In order to expose Codex via an MCP server, I realized that we should be
taking `cwd` as a parameter rather than assuming
`std::env::current_dir()` as the `cwd`. Specifically, the user may want
to start a session in a directory other than the one where the MCP
server has been started.

This PR makes `cwd: PathBuf` a required field of `Session` and threads
it all the way through, though I think there is still an issue with not
honoring `workdir` for `apply_patch`, which is something we also had to
fix in the TypeScript version: https://github.com/openai/codex/pull/556.

This also adds `-C`/`--cd` to change the cwd via the command line.

To test, I ran:

```
cargo run --bin codex -- exec -C /tmp 'show the output of ls'
```

and verified it showed the contents of my `/tmp` folder instead of
`$PWD`.
2025-05-04 10:57:12 -07:00
Michael Bolin
0a00b5ed29 fix: overhaul SandboxPolicy and config loading in Rust (#732)
Previous to this PR, `SandboxPolicy` was a bit difficult to work with:


237f8a11e1/codex-rs/core/src/protocol.rs (L98-L108)

Specifically:

* It was an `enum` and therefore options were mutually exclusive as
opposed to additive.
* It defined things in terms of what the agent _could not_ do as opposed
to what they _could_ do. This made things hard to support because we
would prefer to build up a sandbox config by starting with something
extremely restrictive and only granting permissions for things the user
as explicitly allowed.

This PR changes things substantially by redefining the policy in terms
of two concepts:

* A `SandboxPermission` enum that defines permissions that can be
granted to the agent/sandbox.
* A `SandboxPolicy` that internally stores a `Vec<SandboxPermission>`,
but externally exposes a simpler API that can be used to configure
Seatbelt/Landlock.

Previous to this PR, we supported a `--sandbox` flag that effectively
mapped to an enum value in `SandboxPolicy`. Though now that
`SandboxPolicy` is a wrapper around `Vec<SandboxPermission>`, the single
`--sandbox` flag no longer makes sense. While I could have turned it
into a flag that the user can specify multiple times, I think the
current values to use with such a flag are long and potentially messy,
so for the moment, I have dropped support for `--sandbox` altogether and
we can bring it back once we have figured out the naming thing.

Since `--sandbox` is gone, users now have to specify `--full-auto` to
get a sandbox that allows writes in `cwd`. Admittedly, there is no clean
way to specify the equivalent of `--full-auto` in your `config.toml`
right now, so we will have to revisit that, as well.

Because `Config` presents a `SandboxPolicy` field and `SandboxPolicy`
changed considerably, I had to overhaul how config loading works, as
well. There are now two distinct concepts, `ConfigToml` and `Config`:

* `ConfigToml` is the deserialization of `~/.codex/config.toml`. As one
might expect, every field is `Optional` and it is `#[derive(Deserialize,
Default)]`. Consistent use of `Optional` makes it clear what the user
has specified explicitly.
* `Config` is the "normalized config" and is produced by merging
`ConfigToml` with `ConfigOverrides`. Where `ConfigToml` contains a raw
`Option<Vec<SandboxPermission>>`, `Config` presents only the final
`SandboxPolicy`.

The changes to `core/src/exec.rs` and `core/src/linux.rs` merit extra
special attention to ensure we are faithfully mapping the
`SandboxPolicy` to the Seatbelt and Landlock configs, respectively.

Also, take note that `core/src/seatbelt_readonly_policy.sbpl` has been
renamed to `codex-rs/core/src/seatbelt_base_policy.sbpl` and that
`(allow file-read*)` has been removed from the `.sbpl` file as now this
is added to the policy in `core/src/exec.rs` when
`sandbox_policy.has_full_disk_read_access()` is `true`.
2025-04-29 15:01:16 -07:00
Michael Bolin
31d0d7a305 feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:

Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.

To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:

- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.

Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00