Adds AgentMessageContentDelta, ReasoningContentDelta,
ReasoningRawContentDelta item streaming events while maintaining
compatibility for old events.
---------
Co-authored-by: Owen Lin <owen@openai.com>
In this PR, I am exploring migrating task kind to an invocation of
Codex. The main reason would be getting rid off multiple
`ConversationHistory` state and streamlining our context/history
management.
This approach depends on opening a channel between the sub-codex and
codex. This channel is responsible for forwarding `interactive`
(`approvals`) and `non-interactive` events. The `task` is responsible
for handling those events.
This opens the door for implementing `codex as a tool`, replacing
`compact` and `review`, and potentially subagents.
One consideration is this code is very similar to `app-server` specially
in the approval part. If in the future we wanted an interactive
`sub-codex` we should consider using `codex-mcp`
1. Adds AgentMessage, Reasoning, WebSearch items.
2. Switches the ResponseItem parsing to use new items and then also emit
3. Removes user-item kind and filters out "special" (environment) user
items when returning to clients.
While we do not want to encourage users to hardcode secrets in their
`config.toml` file, it should be possible to pass an API key
programmatically. For example, when using `codex app-server`, it is
possible to pass a "bag of configuration" as part of the
`NewConversationParams`:
682d05512f/codex-rs/app-server-protocol/src/protocol.rs (L248-L251)
When using `codex app-server`, it's not practical to change env vars of
the `codex app-server` process on the fly (which is how we usually read
API key values), so this helps with that.
We continue the separation between `codex app-server` and `codex
mcp-server`.
In particular, we introduce a new crate, `codex-app-server-protocol`,
and migrate `codex-rs/protocol/src/mcp_protocol.rs` into it, renaming it
`codex-rs/app-server-protocol/src/protocol.rs`.
Because `ConversationId` was defined in `mcp_protocol.rs`, we move it
into its own file, `codex-rs/protocol/src/conversation_id.rs`, and
because it is referenced in a ton of places, we have to touch a lot of
files as part of this PR.
We also decide to get away from proper JSON-RPC 2.0 semantics, so we
also introduce `codex-rs/app-server-protocol/src/jsonrpc_lite.rs`, which
is basically the same `JSONRPCMessage` type defined in `mcp-types`
except with all of the `"jsonrpc": "2.0"` removed.
Getting rid of `"jsonrpc": "2.0"` makes our serialization logic
considerably simpler, as we can lean heavier on serde to serialize
directly into the wire format that we use now.
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
We're trying to migrate from `session_id: Uuid` to `conversation_id:
ConversationId`. Not only does this give us more type safety but it
unifies our terminology across Codex and with the implementation of
session resuming, a conversation (which can span multiple sessions) is
more appropriate.
I started this impl on https://github.com/openai/codex/pull/3219 as part
of getting resume working in the extension but it's big enough that it
should be broken out.
The gpt-oss models require reasoning with subsequent Chat Completions
requests because otherwise the model forgets why the tools were called.
This change fixes that and also adds some additional missing
documentation around how to handle context windows in Ollama and how to
show the CoT if you desire to.