This introduces a new set of request types that our `codex mcp`
supports. Note that these do not conform to MCP tool calls so that
instead of having to send something like this:
```json
{
"jsonrpc": "2.0",
"method": "tools/call",
"id": 42,
"params": {
"name": "newConversation",
"arguments": {
"model": "gpt-5",
"approvalPolicy": "on-request"
}
}
}
```
we can send something like this:
```json
{
"jsonrpc": "2.0",
"method": "newConversation",
"id": 42,
"params": {
"model": "gpt-5",
"approvalPolicy": "on-request"
}
}
```
Admittedly, this new format is not a valid MCP tool call, but we are OK
with that right now. (That is, not everything we might want to request
of `codex mcp` is something that is appropriate for an autonomous agent
to do.)
To start, this introduces four request types:
- `newConversation`
- `sendUserMessage`
- `addConversationListener`
- `removeConversationListener`
The new `mcp-server/tests/codex_message_processor_flow.rs` shows how
these can be used.
The types are defined on the `CodexRequest` enum, so we introduce a new
`CodexMessageProcessor` that is responsible for dealing with requests
from this enum. The top-level `MessageProcessor` has been updated so
that when `process_request()` is called, it first checks whether the
request conforms to `CodexRequest` and dispatches it to
`CodexMessageProcessor` if so.
Note that I also decided to use `camelCase` for the on-the-wire format,
as that seems to be the convention for MCP.
For the moment, the new protocol is defined in `wire_format.rs` within
the `mcp-server` crate, but in a subsequent PR, I will probably move it
to its own crate to ensure the protocol has minimal dependencies and
that we can codegen a schema from it.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/2264).
* #2278
* __->__ #2264