This is a large change to support a "history" feature like you would
expect in a shell like Bash.
History events are recorded in `$CODEX_HOME/history.jsonl`. Because it
is a JSONL file, it is straightforward to append new entries (as opposed
to the TypeScript file that uses `$CODEX_HOME/history.json`, so to be
valid JSON, each new entry entails rewriting the entire file). Because
it is possible for there to be multiple instances of Codex CLI writing
to `history.jsonl` at once, we use advisory file locking when working
with `history.jsonl` in `codex-rs/core/src/message_history.rs`.
Because we believe history is a sufficiently useful feature, we enable
it by default. Though to provide some safety, we set the file
permissions of `history.jsonl` to be `o600` so that other users on the
system cannot read the user's history. We do not yet support a default
list of `SENSITIVE_PATTERNS` as the TypeScript CLI does:
3fdf9df133/codex-cli/src/utils/storage/command-history.ts (L10-L17)
We are going to take a more conservative approach to this list in the
Rust CLI. For example, while `/\b[A-Za-z0-9-_]{20,}\b/` might exclude
sensitive information like API tokens, it would also exclude valuable
information such as references to Git commits.
As noted in the updated documentation, users can opt-out of history by
adding the following to `config.toml`:
```toml
[history]
persistence = "none"
```
Because `history.jsonl` could, in theory, be quite large, we take a[n
arguably overly pedantic] approach in reading history entries into
memory. Specifically, we start by telling the client the current number
of entries in the history file (`history_entry_count`) as well as the
inode (`history_log_id`) of `history.jsonl` (see the new fields on
`SessionConfiguredEvent`).
The client is responsible for keeping new entries in memory to create a
"local history," but if the user hits up enough times to go "past" the
end of local history, then the client should use the new
`GetHistoryEntryRequest` in the protocol to fetch older entries.
Specifically, it should pass the `history_log_id` it was given
originally and work backwards from `history_entry_count`. (It should
really fetch history in batches rather than one-at-a-time, but that is
something we can improve upon in subsequent PRs.)
The motivation behind this crazy scheme is that it is designed to defend
against:
* The `history.jsonl` being truncated during the session such that the
index into the history is no longer consistent with what had been read
up to that point. We do not yet have logic to enforce a `max_bytes` for
`history.jsonl`, but once we do, we will aspire to implement it in a way
that should result in a new inode for the file on most systems.
* New items from concurrent Codex CLI sessions amending to the history.
Because, in absence of truncation, `history.jsonl` is an append-only
log, so long as the client reads backwards from `history_entry_count`,
it should always get a consistent view of history. (That said, it will
not be able to read _new_ commands from concurrent sessions, but perhaps
we will introduce a `/` command to reload latest history or something
down the road.)
Admittedly, my testing of this feature thus far has been fairly light. I
expect we will find bugs and introduce enhancements/fixes going forward.
Moving to Rust 1.87 introduced a clippy warning that
`SendError<AppEvent>` was too large.
In practice, the only thing we ever did when we got this error was log
it (if the mspc channel is closed, then the app is likely shutting down
or something, so there's not much to do...), so this finally motivated
me to introduce `AppEventSender`, which wraps
`std::sync::mpsc::Sender<AppEvent>` with a `send()` method that invokes
`send()` on the underlying `Sender` and logs an `Err` if it gets one.
This greatly simplifies the code, as many functions that previously
returned `Result<(), SendError<AppEvent>>` now return `()`, so we don't
have to propagate an `Err` all over the place that we don't really
handle, anyway.
This also makes it so we can upgrade to Rust 1.87 in CI.
Introduces support for slash commands like in the TypeScript CLI. We do
not support the full set of commands yet, but the core abstraction is
there now.
In particular, we have a `SlashCommand` enum and due to thoughtful use
of the [strum](https://crates.io/crates/strum) crate, it requires
minimal boilerplate to add a new command to the list.
The key new piece of UI is `CommandPopup`, though the keyboard events
are still handled by `ChatComposer`. The behavior is roughly as follows:
* if the first character in the composer is `/`, the command popup is
displayed (if you really want to send a message to Codex that starts
with a `/`, simply put a space before the `/`)
* while the popup is displayed, up/down can be used to change the
selection of the popup
* if there is a selection, hitting tab completes the command, but does
not send it
* if there is a selection, hitting enter sends the command
* if the prefix of the composer matches a command, the command will be
visible in the popup so the user can see the description (commands could
take arguments, so additional text may appear after the command name
itself)
https://github.com/user-attachments/assets/39c3e6ee-eeb7-4ef7-a911-466d8184975f
Incidentally, Codex wrote almost all the code for this PR!
`BottomPane` was getting a bit unwieldy because it maintained a
`PaneState` enum with three variants and many of its methods had `match`
statements to handle each variant. To replace the enum, this PR:
* Introduces a `trait BottomPaneView` that has two implementations:
`StatusIndicatorView` and `ApprovalModalView`.
* Migrates `PaneState::TextInput` into its own struct, `ChatComposer`,
that does **not** implement `BottomPaneView`.
* Updates `BottomPane` so it has `composer: ChatComposer` and
`active_view: Option<Box<dyn BottomPaneView<'a> + 'a>>`. The idea is
that `active_view` takes priority and is displayed when it is `Some`;
otherwise, `ChatComposer` is displayed.
* While methods of `BottomPane` often have to check whether
`active_view` is present to decide which component to delegate to, the
code is more straightforward than before and introducing new
implementations of `BottomPaneView` should be less painful.
Because we want to retain the `TextArea` owned by `ChatComposer` even
when another view is displayed, to keep the ownership logic simple, it
seemed best to keep `ChatComposer` distinct from `BottomPaneView`.