This adds initial support for MCP servers in the style of Claude Desktop
and Cursor. Note this PR is the bare minimum to get things working end
to end: all configured MCP servers are launched every time Codex is run,
there is no recovery for MCP servers that crash, etc.
(Also, I took some shortcuts to change some fields of `Session` to be
`pub(crate)`, which also means there are circular deps between
`codex.rs` and `mcp_tool_call.rs`, but I will clean that up in a
subsequent PR.)
`codex-rs/README.md` is updated as part of this PR to explain how to use
this feature. There is a bit of plumbing to route the new settings from
`Config` to the business logic in `codex.rs`. The most significant
chunks for new code are in `mcp_connection_manager.rs` (which defines
the `McpConnectionManager` struct) and `mcp_tool_call.rs`, which is
responsible for tool calls.
This PR also introduces new `McpToolCallBegin` and `McpToolCallEnd`
event types to the protocol, but does not add any handlers for them.
(See https://github.com/openai/codex/pull/836 for initial usage.)
To test, I added the following to my `~/.codex/config.toml`:
```toml
# Local build of https://github.com/hideya/mcp-server-weather-js
[mcp_servers.weather]
command = "/Users/mbolin/code/mcp-server-weather-js/dist/index.js"
args = []
```
And then I ran the following:
```
codex-rs$ cargo run --bin codex exec 'what is the weather in san francisco'
[2025-05-06T22:40:05] Task started: 1
[2025-05-06T22:40:18] Agent message: Here’s the latest National Weather Service forecast for San Francisco (downtown, near 37.77° N, 122.42° W):
This Afternoon (Tue):
• Sunny, high near 69 °F
• West-southwest wind around 12 mph
Tonight:
• Partly cloudy, low around 52 °F
• SW wind 7–10 mph
...
```
Note that Codex itself is not able to make network calls, so it would
not normally be able to get live weather information like this. However,
the weather MCP is [currently] not run under the Codex sandbox, so it is
able to hit `api.weather.gov` and fetch current weather information.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/829).
* #836
* __->__ #829
This adds support for the `--disable-response-storage` flag across our
multiple Rust CLIs to support customers who have opted into Zero-Data
Retention (ZDR). The analogous changes to the TypeScript CLI were:
* https://github.com/openai/codex/pull/481
* https://github.com/openai/codex/pull/543
For a client using ZDR, `previous_response_id` will never be available,
so the `input` field of an API request must include the full transcript
of the conversation thus far. As such, this PR changes the type of
`Prompt.input` from `Vec<ResponseInputItem>` to `Vec<ResponseItem>`.
Practically speaking, `ResponseItem` was effectively a "superset" of
`ResponseInputItem` already. The main difference for us is that
`ResponseItem` includes the `FunctionCall` variant that we have to
include as part of the conversation history in the ZDR case.
Another key change in this PR is modifying `try_run_turn()` so that it
returns the `Vec<ResponseItem>` for the turn in addition to the
`Vec<ResponseInputItem>` produced by `try_run_turn()`. This is because
the caller of `run_turn()` needs to record the `Vec<ResponseItem>` when
ZDR is enabled.
To that end, this PR introduces `ZdrTranscript` (and adds
`zdr_transcript: Option<ZdrTranscript>` to `struct State` in `codex.rs`)
to take responsibility for maintaining the conversation transcript in
the ZDR case.
We currently see a behavior that looks like this:
```
2025-04-25T16:52:24.552789Z WARN codex_core::codex: stream disconnected - retrying turn (1/10 in 232ms)...
codex> event: BackgroundEvent { message: "stream error: stream disconnected before completion: Transport error: error decoding response body; retrying 1/10 in 232ms…" }
2025-04-25T16:52:54.789885Z WARN codex_core::codex: stream disconnected - retrying turn (2/10 in 418ms)...
codex> event: BackgroundEvent { message: "stream error: stream disconnected before completion: Transport error: error decoding response body; retrying 2/10 in 418ms…" }
```
This PR contains a few different fixes that attempt to resolve/improve
this:
1. **Remove overall client timeout.** I think
[this](https://github.com/openai/codex/pull/658/files#diff-c39945d3c42f29b506ff54b7fa2be0795b06d7ad97f1bf33956f60e3c6f19c19L173)
is perhaps the big fix -- it looks to me like this was actually timing
out even if events were still coming through, and that was causing a
disconnect right in the middle of a healthy stream.
2. **Cap response sizes.** We were frequently sending MUCH larger
responses than the upstream typescript `codex`, and that was definitely
not helping. [Fix
here](https://github.com/openai/codex/pull/658/files#diff-d792bef59aa3ee8cb0cbad8b176dbfefe451c227ac89919da7c3e536a9d6cdc0R21-R26)
for that one.
3. **Much higher idle timeout.** Our idle timeout value was much lower
than typescript.
4. **Sub-linear backoff.** We were much too aggressively backing off,
[this](https://github.com/openai/codex/pull/658/files#diff-5d5959b95c6239e6188516da5c6b7eb78154cd9cfedfb9f753d30a7b6d6b8b06R30-R33)
makes it sub-exponential but maintains the jitter and such.
I was seeing that `stream error: stream disconnected` behavior
constantly, and anecdotally I can no longer reproduce. It feels much
snappier.
As stated in `codex-rs/README.md`:
Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.
To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:
- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.
Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.