Adding the ability to resume conversations.
we have one verb `resume`.
Behavior:
`tui`:
`codex resume`: opens session picker
`codex resume --last`: continue last message
`codex resume <session id>`: continue conversation with `session id`
`exec`:
`codex resume --last`: continue last conversation
`codex resume <session id>`: continue conversation with `session id`
Implementation:
- I added a function to find the path in `~/.codex/sessions/` with a
`UUID`. This is helpful in resuming with session id.
- Added the above mentioned flags
- Added lots of testing
This PR does the following:
* Adds the ability to paste or type an API key.
* Removes the `preferred_auth_method` config option. The last login
method is always persisted in auth.json, so this isn't needed.
* If OPENAI_API_KEY env variable is defined, the value is used to
prepopulate the new UI. The env variable is otherwise ignored by the
CLI.
* Adds a new MCP server entry point "login_api_key" so we can implement
this same API key behavior for the VS Code extension.
<img width="473" height="140" alt="Screenshot 2025-09-04 at 3 51 04 PM"
src="https://github.com/user-attachments/assets/c11bbd5b-8a4d-4d71-90fd-34130460f9d9"
/>
<img width="726" height="254" alt="Screenshot 2025-09-04 at 3 51 32 PM"
src="https://github.com/user-attachments/assets/6cc76b34-309a-4387-acbc-15ee5c756db9"
/>
The previous config approach had a few issues:
1. It is part of the config but not designed to be used externally
2. It had to be wired through many places (look at the +/- on this PR
3. It wasn't guaranteed to be set consistently everywhere because we
don't have a super well defined way that configs stack. For example, the
extension would configure during newConversation but anything that
happened outside of that (like login) wouldn't get it.
This env var approach is cleaner and also creates one less thing we have
to deal with when coming up with a better holistic story around configs.
One downside is that I removed the unit test testing for the override
because I don't want to deal with setting the global env or spawning
child processes and figuring out how to introspect their originator
header. The new code is sufficiently simple and I tested it e2e that I
feel as if this is still worth it.
This PR adds a central `AuthManager` struct that manages the auth
information used across conversations and the MCP server. Prior to this,
each conversation and the MCP server got their own private snapshots of
the auth information, and changes to one (such as a logout or token
refresh) were not seen by others.
This is especially problematic when multiple instances of the CLI are
run. For example, consider the case where you start CLI 1 and log in to
ChatGPT account X and then start CLI 2 and log out and then log in to
ChatGPT account Y. The conversation in CLI 1 is still using account X,
but if you create a new conversation, it will suddenly (and
unexpectedly) switch to account Y.
With the `AuthManager`, auth information is read from disk at the time
the `ConversationManager` is constructed, and it is cached in memory.
All new conversations use this same auth information, as do any token
refreshes.
The `AuthManager` is also used by the MCP server's GetAuthStatus
command, which now returns the auth method currently used by the MCP
server.
This PR also includes an enhancement to the GetAuthStatus command. It
now accepts two new (optional) input parameters: `include_token` and
`refresh_token`. Callers can use this to request the in-use auth token
and can optionally request to refresh the token.
The PR also adds tests for the login and auth APIs that I recently added
to the MCP server.
This PR adds the following:
* A getAuthStatus method on the mcp server. This returns the auth method
currently in use (chatgpt or apikey) or none if the user is not
authenticated. It also returns the "preferred auth method" which
reflects the `preferred_auth_method` value in the config.
* A logout method on the mcp server. If called, it logs out the user and
deletes the `auth.json` file — the same behavior in the cli's `/logout`
command.
* An `authStatusChange` event notification that is sent when the auth
status changes due to successful login or logout operations.
* Logic to pass command-line config overrides to the mcp server at
startup time. This allows use cases like `codex mcp -c
preferred_auth_method=apikey`.
Codex created this PR from the following prompt:
> upgrade this entire repo to Rust 1.89. Note that this requires
updating codex-rs/rust-toolchain.toml as well as the workflows in
.github/. Make sure that things are "clippy clean" as this change will
likely uncover new Clippy errors. `just fmt` and `cargo clippy --tests`
are sufficient to check for correctness
Note this modifies a lot of lines because it folds nested `if`
statements using `&&`.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/2465).
* #2467
* __->__ #2465
Motivation: we have users who uses their API key although they want to
use ChatGPT account. We want to give them the chance to always login
with their account.
This PR displays login options when the user is not signed in with
ChatGPT. Even if you have set an OpenAI API key as an environment
variable, you will still be prompted to log in with ChatGPT.
We’ve also added a new flag, `always_use_api_key_signing` false by
default, which ensures you are never asked to log in with ChatGPT and
always defaults to using your API key.
https://github.com/user-attachments/assets/b61ebfa9-3c5e-4ab7-bf94-395c23a0e0af
After ChatGPT sign in:
https://github.com/user-attachments/assets/d58b366b-c46a-428f-a22f-2ac230f991c0
The existing `wire_format.rs` should share more types with the
`codex-protocol` crate (like `AskForApproval` instead of maintaining a
parallel `CodexToolCallApprovalPolicy` enum), so this PR moves
`wire_format.rs` into `codex-protocol`, renaming it as
`mcp-protocol.rs`. We also de-dupe types, where appropriate.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/2423).
* #2424
* __->__ #2423
The high-order bit on this PR is that it makes it so `sandbox.rs` tests
both Mac and Linux, as we introduce a general
`spawn_command_under_sandbox()` function with platform-specific
implementations for testing.
An important, and interesting, discovery in porting the test to Linux is
that (for reasons cited in the code comments), `/dev/shm` has to be
added to `writable_roots` on Linux in order for `multiprocessing.Lock`
to work there. Granting write access to `/dev/shm` comes with some
degree of risk, so we do not make this the default for Codex CLI.
Piggybacking on top of #2317, this moves the
`python_multiprocessing_lock_works` test yet again, moving
`codex-rs/core/tests/sandbox.rs` to `codex-rs/exec/tests/sandbox.rs`
because in `codex-rs/exec/tests` we can use `cargo_bin()` like so:
```
let codex_linux_sandbox_exe = assert_cmd::cargo::cargo_bin("codex-exec");
```
which is necessary so we can use `codex_linux_sandbox_exe` and therefore
`spawn_command_under_linux_sandbox` in an integration test.
This also moves `spawn_command_under_linux_sandbox()` out of `exec.rs`
and into `landlock.rs`, which makes things more consistent with
`seatbelt.rs` in `codex-core`.
For reference, https://github.com/openai/codex/pull/1808 is the PR that
made the change to Seatbelt to get this test to pass on Mac.
This PR does two things because after I got deep into the first one I
started pulling on the thread to the second:
- Makes `ConversationManager` the place where all in-memory
conversations are created and stored. Previously, `MessageProcessor` in
the `codex-mcp-server` crate was doing this via its `session_map`, but
this is something that should be done in `codex-core`.
- It unwinds the `ctrl_c: tokio::sync::Notify` that was threaded
throughout our code. I think this made sense at one time, but now that
we handle Ctrl-C within the TUI and have a proper `Op::Interrupt` event,
I don't think this was quite right, so I removed it. For `codex exec`
and `codex proto`, we now use `tokio::signal::ctrl_c()` directly, but we
no longer make `Notify` a field of `Codex` or `CodexConversation`.
Changes of note:
- Adds the files `conversation_manager.rs` and `codex_conversation.rs`
to `codex-core`.
- `Codex` and `CodexSpawnOk` are no longer exported from `codex-core`:
other crates must use `CodexConversation` instead (which is created via
`ConversationManager`).
- `core/src/codex_wrapper.rs` has been deleted in favor of
`ConversationManager`.
- `ConversationManager::new_conversation()` returns `NewConversation`,
which is in line with the `new_conversation` tool we want to add to the
MCP server. Note `NewConversation` includes `SessionConfiguredEvent`, so
we eliminate checks in cases like `codex-rs/core/tests/client.rs` to
verify `SessionConfiguredEvent` is the first event because that is now
internal to `ConversationManager`.
- Quite a bit of code was deleted from
`codex-rs/mcp-server/src/message_processor.rs` since it no longer has to
manage multiple conversations itself: it goes through
`ConversationManager` instead.
- `core/tests/live_agent.rs` has been deleted because I had to update a
bunch of tests and all the tests in here were ignored, and I don't think
anyone ever ran them, so this was just technical debt, at this point.
- Removed `notify_on_sigint()` from `util.rs` (and in a follow-up, I
hope to refactor the blandly-named `util.rs` into more descriptive
files).
- In general, I started replacing local variables named `codex` as
`conversation`, where appropriate, though admittedly I didn't do it
through all the integration tests because that would have added a lot of
noise to this PR.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/2240).
* #2264
* #2263
* __->__ #2240
## Summary
- ensure CLI help uses `codex` as program name regardless of binary
filename
## Testing
- `just fmt`
- `just fix` *(fails: `let` expressions in this position are unstable)*
- `cargo test --all-features` *(fails: `let` expressions in this
position are unstable)*
------
https://chatgpt.com/codex/tasks/task_i_689bd5a731188320814dcbbc546ce22a
There are two valid ways to create an instance of `CodexAuth`:
`from_api_key()` and `from_codex_home()`. Now both are static methods of
`CodexAuth` and are listed first in the implementation.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/1966).
* #1971
* #1970
* __->__ #1966
* #1965
* #1962
## Summary
- support `codex logout` via new subcommand and helper that removes the
stored `auth.json`
- expose a `logout` function in `codex-login` and test it
- add `/logout` slash command in the TUI; command list is filtered when
not logged in and the handler deletes `auth.json` then exits
## Testing
- `just fix` *(fails: failed to get `diffy` from crates.io)*
- `cargo test --all-features` *(fails: failed to get `diffy` from
crates.io)*
------
https://chatgpt.com/codex/tasks/task_i_68945c3facac832ca83d48499716fb51
This sets up the scaffolding and basic flow for a TUI onboarding
experience. It covers sign in with ChatGPT, env auth, as well as some
safety guidance.
Next up:
1. Replace the git warning screen
2. Use this to configure default approval/sandbox modes
Note the shimmer flashes are from me slicing the video, not jank.
https://github.com/user-attachments/assets/0fbe3479-fdde-41f3-87fb-a7a83ab895b8
At 550 lines, `exec.rs` was a bit large. In particular, I found it hard
to locate the Seatbelt-related code quickly without a file with
`seatbelt` in the name, so this refactors things so:
- `spawn_command_under_seatbelt()` and dependent code moves to a new
`seatbelt.rs` file
- `spawn_child_async()` and dependent code moves to a new `spawn.rs`
file
Adds a `CodexAuth` type that encapsulates information about available
auth modes and logic for refreshing the token.
Changes `Responses` API to send requests to different endpoints based on
the auth type.
Updates login_with_chatgpt to support API-less mode and skip the key
exchange.
Perhaps there was an intention to make the login screen prettier, but it
feels quite silly right now to just have a screen that says "press q",
so replace it with something that lets the user directly login without
having to quit the app.
<img width="1283" height="635" alt="Screenshot 2025-07-28 at 2 54 05 PM"
src="https://github.com/user-attachments/assets/f19e5595-6ef9-4a2d-b409-aa61b30d3628"
/>
This update replaces the previous ratatui history widget with an
append-only log so that the terminal can handle text selection and
scrolling. It also disables streaming responses, which we'll do our best
to bring back in a later PR. It also adds a small summary of token use
after the TUI exits.
## Summary
Adds a new mcp tool call, `codex-reply`, so we can continue existing
sessions. This is a first draft and does not yet support sessions from
previous processes.
## Testing
- [x] tested with mcp client
In order to to this, I created a new `chatgpt` crate where we can put
any code that interacts directly with ChatGPT as opposed to the OpenAI
API. I added a disclaimer to the README for it that it should primarily
be modified by OpenAI employees.
https://github.com/user-attachments/assets/bb978e33-d2c9-4d8e-af28-c8c25b1988e8
Current 0.4.0 release:
```
~/code/codex2/codex-rs$ codex completion | head
_codex-cli() {
local i cur prev opts cmd
COMPREPLY=()
if [[ "${BASH_VERSINFO[0]}" -ge 4 ]]; then
cur="$2"
else
cur="${COMP_WORDS[COMP_CWORD]}"
fi
prev="$3"
cmd=""
```
with this change:
```
~/code/codex2/codex-rs$ just codex completion | head
cargo run --bin codex -- "$@"
Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.82s
Running `target/debug/codex completion`
_codex() {
local i cur prev opts cmd
COMPREPLY=()
if [[ "${BASH_VERSINFO[0]}" -ge 4 ]]; then
cur="$2"
else
cur="${COMP_WORDS[COMP_CWORD]}"
fi
prev="$3"
cmd=""
```
On a high-level, we try to design `config.toml` so that you don't have
to "comment out a lot of stuff" when testing different options.
Previously, defining a sandbox policy was somewhat at odds with this
principle because you would define the policy as attributes of
`[sandbox]` like so:
```toml
[sandbox]
mode = "workspace-write"
writable_roots = [ "/tmp" ]
```
but if you wanted to temporarily change to a read-only sandbox, you
might feel compelled to modify your file to be:
```toml
[sandbox]
mode = "read-only"
# mode = "workspace-write"
# writable_roots = [ "/tmp" ]
```
Technically, commenting out `writable_roots` would not be strictly
necessary, as `mode = "read-only"` would ignore `writable_roots`, but
it's still a reasonable thing to do to keep things tidy.
Currently, the various values for `mode` do not support that many
attributes, so this is not that hard to maintain, but one could imagine
this becoming more complex in the future.
In this PR, we change Codex CLI so that it no longer recognizes
`[sandbox]`. Instead, it introduces a top-level option, `sandbox_mode`,
and `[sandbox_workspace_write]` is used to further configure the sandbox
when when `sandbox_mode = "workspace-write"` is used:
```toml
sandbox_mode = "workspace-write"
[sandbox_workspace_write]
writable_roots = [ "/tmp" ]
```
This feels a bit more future-proof in that it is less tedious to
configure different sandboxes:
```toml
sandbox_mode = "workspace-write"
[sandbox_read_only]
# read-only options here...
[sandbox_workspace_write]
writable_roots = [ "/tmp" ]
[sandbox_danger_full_access]
# danger-full-access options here...
```
In this scheme, you never need to comment out the configuration for an
individual sandbox type: you only need to redefine `sandbox_mode`.
Relatedly, previous to this change, a user had to do `-c
sandbox.mode=read-only` to change the mode on the command line. With
this change, things are arguably a bit cleaner because the equivalent
option is `-c sandbox_mode=read-only` (and now `-c
sandbox_workspace_write=...` can be set separately).
Though more importantly, we introduce the `-s/--sandbox` option to the
CLI, which maps directly to `sandbox_mode` in `config.toml`, making
config override behavior easier to reason about. Moreover, as you can
see in the updates to the various Markdown files, it is much easier to
explain how to configure sandboxing when things like `--sandbox
read-only` can be used as an example.
Relatedly, this cleanup also made it straightforward to add support for
a `sandbox` option for Codex when used as an MCP server (see the changes
to `mcp-server/src/codex_tool_config.rs`).
Fixes https://github.com/openai/codex/issues/1248.
This is a major redesign of how sandbox configuration works and aims to
fix https://github.com/openai/codex/issues/1248. Specifically, it
replaces `sandbox_permissions` in `config.toml` (and the
`-s`/`--sandbox-permission` CLI flags) with a "table" with effectively
three variants:
```toml
# Safest option: full disk is read-only, but writes and network access are disallowed.
[sandbox]
mode = "read-only"
# The cwd of the Codex task is writable, as well as $TMPDIR on macOS.
# writable_roots can be used to specify additional writable folders.
[sandbox]
mode = "workspace-write"
writable_roots = [] # Optional, defaults to the empty list.
network_access = false # Optional, defaults to false.
# Disable sandboxing: use at your own risk!!!
[sandbox]
mode = "danger-full-access"
```
This should make sandboxing easier to reason about. While we have
dropped support for `-s`, the way it works now is:
- no flags => `read-only`
- `--full-auto` => `workspace-write`
- currently, there is no way to specify `danger-full-access` via a CLI
flag, but we will revisit that as part of
https://github.com/openai/codex/issues/1254
Outstanding issue:
- As noted in the `TODO` on `SandboxPolicy::is_unrestricted()`, we are
still conflating sandbox preferences with approval preferences in that
case, which needs to be cleaned up.
This does not implement the full Login with ChatGPT experience, but it
should unblock people.
**What works**
* The `codex` multitool now has a `login` subcommand, so you can run
`codex login`, which should write `CODEX_HOME/auth.json` if you complete
the flow successfully. The TUI will now read the `OPENAI_API_KEY` from
`auth.json`.
* The TUI should refresh the token if it has expired and the necessary
information is in `auth.json`.
* There is a `LoginScreen` in the TUI that tells you to run `codex
login` if both (1) your model provider expects to use `OPENAI_API_KEY`
as its env var, and (2) `OPENAI_API_KEY` is not set.
**What does not work**
* The `LoginScreen` does not support the login flow from within the TUI.
Instead, it tells you to quit, run `codex login`, and then run `codex`
again.
* `codex exec` does read from `auth.json` yet, nor does it direct the
user to go through the login flow if `OPENAI_API_KEY` is not be found.
* The `maybeRedeemCredits()` function from `get-api-key.tsx` has not
been ported from TypeScript to `login_with_chatgpt.py` yet:
a67a67f325/codex-cli/src/utils/get-api-key.tsx (L84-L89)
**Implementation**
Currently, the OAuth flow requires running a local webserver on
`127.0.0.1:1455`. It seemed wasteful to incur the additional binary cost
of a webserver dependency in the Rust CLI just to support login, so
instead we implement this logic in Python, as Python has a `http.server`
module as part of its standard library. Specifically, we bundle the
contents of a single Python file as a string in the Rust CLI and then
use it to spawn a subprocess as `python3 -c
{{SOURCE_FOR_PYTHON_SERVER}}`.
As such, the most significant files in this PR are:
```
codex-rs/login/src/login_with_chatgpt.py
codex-rs/login/src/lib.rs
```
Now that the CLI may load `OPENAI_API_KEY` from the environment _or_
`CODEX_HOME/auth.json`, we need a new abstraction for reading/writing
this variable, so we introduce:
```
codex-rs/core/src/openai_api_key.rs
```
Note that `std::env::set_var()` is [rightfully] `unsafe` in Rust 2024,
so we use a LazyLock<RwLock<Option<String>>> to store `OPENAI_API_KEY`
so it is read in a thread-safe manner.
Ultimately, it should be possible to go through the entire login flow
from the TUI. This PR introduces a placeholder `LoginScreen` UI for that
right now, though the new `codex login` subcommand introduced in this PR
should be a viable workaround until the UI is ready.
**Testing**
Because the login flow is currently implemented in a standalone Python
file, you can test it without building any Rust code as follows:
```
rm -rf /tmp/codex_home && mkdir /tmp/codex_home
CODEX_HOME=/tmp/codex_home python3 codex-rs/login/src/login_with_chatgpt.py
```
For reference:
* the original TypeScript implementation was introduced in
https://github.com/openai/codex/pull/963
* support for redeeming credits was later added in
https://github.com/openai/codex/pull/974
This PR introduces support for `-c`/`--config` so users can override
individual config values on the command line using `--config
name=value`. Example:
```
codex --config model=o4-mini
```
Making it possible to set arbitrary config values on the command line
results in a more flexible configuration scheme and makes it easier to
provide single-line examples that can be copy-pasted from documentation.
Effectively, it means there are four levels of configuration for some
values:
- Default value (e.g., `model` currently defaults to `o4-mini`)
- Value in `config.toml` (e.g., user could override the default to be
`model = "o3"` in their `config.toml`)
- Specifying `-c` or `--config` to override `model` (e.g., user can
include `-c model=o3` in their list of args to Codex)
- If available, a config-specific flag can be used, which takes
precedence over `-c` (e.g., user can specify `--model o3` in their list
of args to Codex)
Now that it is possible to specify anything that could be configured in
`config.toml` on the command line using `-c`, we do not need to have a
custom flag for every possible config option (which can clutter the
output of `--help`). To that end, as part of this PR, we drop support
for the `--disable-response-storage` flag, as users can now specify `-c
disable_response_storage=true` to get the equivalent functionality.
Under the hood, this works by loading the `config.toml` into a
`toml::Value`. Then for each `key=value`, we create a small synthetic
TOML file with `value` so that we can run the TOML parser to get the
equivalent `toml::Value`. We then parse `key` to determine the point in
the original `toml::Value` to do the insert/replace. Once all of the
overrides from `-c` args have been applied, the `toml::Value` is
deserialized into a `ConfigToml` and then the `ConfigOverrides` are
applied, as before.
Historically, we spawned the Seatbelt and Landlock sandboxes in
substantially different ways:
For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy
specified as an arg followed by the original command:
d1de7bb383/codex-rs/core/src/exec.rs (L147-L219)
For **Landlock/Seccomp**, we would do
`tokio::runtime::Builder::new_current_thread()`, _invoke
Landlock/Seccomp APIs to modify the permissions of that new thread_, and
then spawn the command:
d1de7bb383/codex-rs/core/src/exec_linux.rs (L28-L49)
While it is neat that Landlock/Seccomp supports applying a policy to
only one thread without having to apply it to the entire process, it
requires us to maintain two different codepaths and is a bit harder to
reason about. The tipping point was
https://github.com/openai/codex/pull/1061, in which we had to start
building up the `env` in an unexpected way for the existing
Landlock/Seccomp approach to continue to work.
This PR overhauls things so that we do similar things for Mac and Linux.
It turned out that we were already building our own "helper binary"
comparable to Mac's `sandbox-exec` as part of the `cli` crate:
d1de7bb383/codex-rs/cli/Cargo.toml (L10-L12)
We originally created this to build a small binary to include with the
Node.js version of the Codex CLI to provide support for Linux
sandboxing.
Though the sticky bit is that, at this point, we still want to deploy
the Rust version of Codex as a single, standalone binary rather than a
CLI and a supporting sandboxing binary. To satisfy this goal, we use
"the arg0 trick," in which we:
* use `std::env::current_exe()` to get the path to the CLI that is
currently running
* use the CLI as the `program` for the `Command`
* set `"codex-linux-sandbox"` as arg0 for the `Command`
A CLI that supports sandboxing should check arg0 at the start of the
program. If it is `"codex-linux-sandbox"`, it must invoke
`codex_linux_sandbox::run_main()`, which runs the CLI as if it were
`codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the
appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn
the original command, so do _replace_ the process rather than spawn a
subprocess. Incidentally, we do this before starting the Tokio runtime,
so the process should only have one thread when `execvp(3)` is called.
Because the `core` crate that needs to spawn the Linux sandboxing is not
a CLI in its own right, this means that every CLI that includes `core`
and relies on this behavior has to (1) implement it and (2) provide the
path to the sandboxing executable. While the path is almost always
`std::env::current_exe()`, we needed to make this configurable for
integration tests, so `Config` now has a `codex_linux_sandbox_exe:
Option<PathBuf>` property to facilitate threading this through,
introduced in https://github.com/openai/codex/pull/1089.
This common pattern is now captured in
`codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs`
functions that should use it have been updated as part of this PR.
The `codex-linux-sandbox` crate added to the Cargo workspace as part of
this PR now has the bulk of the Landlock/Seccomp logic, which makes
`core` a bit simpler. Indeed, `core/src/exec_linux.rs` and
`core/src/landlock.rs` were removed/ported as part of this PR. I also
moved the unit tests for this code into an integration test,
`linux-sandbox/tests/landlock.rs`, in which I use
`env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for
`codex_linux_sandbox_exe` since `std::env::current_exe()` is not
appropriate in that case.
https://github.com/openai/codex/pull/1086 is a work-in-progress to make
Linux sandboxing work more like Seatbelt where, for the command we want
to sandbox, we build up the command and then hand it, and some sandbox
configuration flags, to another command to set up the sandbox and then
run it.
In the case of Seatbelt, macOS provides this helper binary and provides
it at `/usr/bin/sandbox-exec`. For Linux, we have to build our own and
pass it through (which is what #1086 does), so this makes the new
`codex_linux_sandbox_exe` available on `Config` so that it will later be
available in `exec.rs` when we need it in #1086.
To date, when handling `shell` and `local_shell` tool calls, we were
spawning new processes using the environment inherited from the Codex
process itself. This means that the sensitive `OPENAI_API_KEY` that
Codex needs to talk to OpenAI models was made available to everything
run by `shell` and `local_shell`. While there are cases where that might
be useful, it does not seem like a good default.
This PR introduces a complex `shell_environment_policy` config option to
control the `env` used with these tool calls. It is inevitably a bit
complex so that it is possible to override individual components of the
policy so without having to restate the entire thing.
Details are in the updated `README.md` in this PR, but here is the
relevant bit that explains the individual fields of
`shell_environment_policy`:
| Field | Type | Default | Description |
| ------------------------- | -------------------------- | ------- |
-----------------------------------------------------------------------------------------------------------------------------------------------
|
| `inherit` | string | `core` | Starting template for the
environment:<br>`core` (`HOME`, `PATH`, `USER`, …), `all` (clone full
parent env), or `none` (start empty). |
| `ignore_default_excludes` | boolean | `false` | When `false`, Codex
removes any var whose **name** contains `KEY`, `SECRET`, or `TOKEN`
(case-insensitive) before other rules run. |
| `exclude` | array<string> | `[]` | Case-insensitive glob
patterns to drop after the default filter.<br>Examples: `"AWS_*"`,
`"AZURE_*"`. |
| `set` | table<string,string> | `{}` | Explicit key/value
overrides or additions – always win over inherited values. |
| `include_only` | array<string> | `[]` | If non-empty, a
whitelist of patterns; only variables that match _one_ pattern survive
the final step. (Generally used with `inherit = "all"`.) |
In particular, note that the default is `inherit = "core"`, so:
* if you have extra env variables that you want to inherit from the
parent process, use `inherit = "all"` and then specify `include_only`
* if you have extra env variables where you want to hardcode the values,
the default `inherit = "core"` will work fine, but then you need to
specify `set`
This configuration is not battle-tested, so we will probably still have
to play with it a bit. `core/src/exec_env.rs` has the critical business
logic as well as unit tests.
Though if nothing else, previous to this change:
```
$ cargo run --bin codex -- debug seatbelt -- printenv OPENAI_API_KEY
# ...prints OPENAI_API_KEY...
```
But after this change it does not print anything (as desired).
One final thing to call out about this PR is that the
`configure_command!` macro we use in `core/src/exec.rs` has to do some
complex logic with respect to how it builds up the `env` for the process
being spawned under Landlock/seccomp. Specifically, doing
`cmd.env_clear()` followed by `cmd.envs(&$env_map)` (which is arguably
the most intuitive way to do it) caused the Landlock unit tests to fail
because the processes spawned by the unit tests started failing in
unexpected ways! If we forgo `env_clear()` in favor of updating env vars
one at a time, the tests still pass. The comment in the code talks about
this a bit, and while I would like to investigate this more, I need to
move on for the moment, but I do plan to come back to it to fully
understand what is going on. For example, this suggests that we might
not be able to spawn a C program that calls `env_clear()`, which would
be...weird. We may still have to fiddle with our Landlock config if that
is the case.
Previously, running Codex as an MCP server required a standalone binary
in our Cargo workspace, but this PR makes it available as a subcommand
(`mcp`) of the main CLI.
Ran this with:
```
RUST_LOG=debug npx @modelcontextprotocol/inspector cargo run --bin codex -- mcp
```
and verified it worked as expected in the inspector at
`http://127.0.0.1:6274/`.