When item ids are sent to Responses API it will load them from the
database ignoring the provided values. This adds extra latency.
Not having the mode to store requests also allows us to simplify the
code.
## Breaking change
The `disable_response_storage` configuration option is removed.
This PR does the following:
- divides user msgs into 3 categories: plain, user instructions, and
environment context
- Centralizes adding user instructions and environment context to a
degree
- Improve the integration testing
Building on top of #3123
Specifically this
[comment](https://github.com/openai/codex/pull/3123#discussion_r2319885089).
We need to send the user message while ignoring the User Instructions
and Environment Context we attach.
### Overview
This PR introduces the following changes:
1. Adds a unified mechanism to convert ResponseItem into EventMsg.
2. Ensures that when a session is initialized with initial history, a
vector of EventMsg is sent along with the session configuration. This
allows clients to re-render the UI accordingly.
3. Added integration testing
### Caveats
This implementation does not send every EventMsg that was previously
dispatched to clients. The excluded events fall into two categories:
• “Arguably” rolled-out events
Examples include tool calls and apply-patch calls. While these events
are conceptually rolled out, we currently only roll out ResponseItems.
These events are already being handled elsewhere and transformed into
EventMsg before being sent.
• Non-rolled-out events
Certain events such as TurnDiff, Error, and TokenCount are not rolled
out at all.
### Future Directions
At present, resuming a session involves maintaining two states:
• UI State
Clients can replay most of the important UI from the provided EventMsg
history.
• Model State
The model receives the complete session history to reconstruct its
internal state.
This design provides a solid foundation. If, in the future, more precise
UI reconstruction is needed, we have two potential paths:
1. Introduce a third data structure that allows us to derive both
ResponseItems and EventMsgs.
2. Clearly divide responsibilities: the core system ensures the
integrity of the model state, while clients are responsible for
reconstructing the UI.
In this test, the ChatGPT token path is used, and the auth layer tries
to refresh the token if it thinks the token is “old.” Your helper writes
a fixed last_refresh timestamp that has now aged past the 28‑day
threshold, so the code attempts a real refresh against auth.openai.com,
never reaches the mock, and you end up with
received_requests().await.unwrap() being empty.
- added `uninlined_format_args` to `[workspace.lints.clippy]` in the
`Cargo.toml` for the workspace
- ran `cargo clippy --tests --fix`
- ran `just fmt`
this dramatically improves time to run `cargo test -p codex-core` (~25x
speedup).
before:
```
cargo test -p codex-core 35.96s user 68.63s system 19% cpu 8:49.80 total
```
after:
```
cargo test -p codex-core 5.51s user 8.16s system 63% cpu 21.407 total
```
both tests measured "hot", i.e. on a 2nd run with no filesystem changes,
to exclude compile times.
approach inspired by [Delete Cargo Integration
Tests](https://matklad.github.io/2021/02/27/delete-cargo-integration-tests.html),
we move all test cases in tests/ into a single suite in order to have a
single binary, as there is significant overhead for each test binary
executed, and because test execution is only parallelized with a single
binary.