Currently we collect all all turn items in a vector, then we add it to
the history on success. This result in losing those items on errors
including aborting `ctrl+c`.
This PR:
- Adds the ability for the tool call to handle cancellation
- bubble the turn items up to where we are recording this info
Admittedly, this logic is an ad-hoc logic that doesn't handle a lot of
error edge cases. The right thing to do is recording to the history on
the spot as `items`/`tool calls output` come. However, this isn't
possible because of having different `task_kind` that has different
`conversation_histories`. The `try_run_turn` has no idea what thread are
we using. We cannot also pass an `arc` to the `conversation_histories`
because it's a private element of `state`.
That's said, `abort` is the most common case and we should cover it
until we remove `task kind`
We are doing some ad-hoc logic while dealing with conversation history.
Ideally, we shouldn't mutate `vec[responseitem]` manually at all and
should depend on `ConversationHistory` for those changes.
Those changes are:
- Adding input to the history
- Removing items from the history
- Correcting history
I am also adding some `error` logs for cases we shouldn't ideally face.
For example, we shouldn't be missing `toolcalls` or `outputs`. We
shouldn't hit `ContextWindowExceeded` while performing `compact`
This refactor will give us granular control over our context management.
I haven't heard of any issues with the studio rmcp client so let's
remove the legacy one and default to the new one.
Any code changes are moving code from the adapter inline but there
should be no meaningful functionality changes.
1. Adds AgentMessage, Reasoning, WebSearch items.
2. Switches the ResponseItem parsing to use new items and then also emit
3. Removes user-item kind and filters out "special" (environment) user
items when returning to clients.
## Summary
- make the plan tool available by default by removing the feature flag
and always registering the handler
- drop plan-tool CLI and API toggles across the exec, TUI, MCP server,
and app server code paths
- update tests and configs to reflect the always-on plan tool and guard
workspace restriction tests against env leakage
## Testing
Manually tested the extension.
------
https://chatgpt.com/codex/tasks/task_i_68f67a3ff2d083209562a773f814c1f9
Today `sub_id` is an ID of a single incoming Codex Op submition. We then
associate all events triggered by this operation using the same
`sub_id`.
At the same time we are also creating a TurnContext per submission and
we'd like to start associating some events (item added/item completed)
with an entire turn instead of just the operation that started it.
Using turn context when sending events give us flexibility to change
notification scheme.
Expose the session cwd in the notify payload and update docs so scripts
and extensions receive the real project path; users get accurate
project-aware notifications in CLI and VS Code.
Fixes#5387
Because the GitHub MCP is one of the most popular MCPs and it
confusingly doesn't support OAuth, we should make it more clear how to
make it work so people don't think Codex is broken.
Adds a new ItemStarted event and delivers UserMessage as the first item
type (more to come).
Renames `InputItem` to `UserInput` considering we're using the `Item`
suffix for actual items.
The goal of this change:
1. Unify user input and user turn implementation.
2. Have a single place where turn/session setting overrides are applied.
3. Have a single place where turn context is created.
4. Create TurnContext only for actual turn and have a separate structure
for current session settings (reuse ConfigureSession)
This adds `parsed_cmd: Vec<ParsedCommand>` to `ExecApprovalRequestEvent`
in the core protocol (`protocol/src/protocol.rs`), which is also what
this field is named on `ExecCommandBeginEvent`. Honestly, I don't love
the name (it sounds like a single command, but it is actually a list of
them), but I don't want to get distracted by a naming discussion right
now.
This also adds `parsed_cmd` to `ExecCommandApprovalParams` in
`codex-rs/app-server-protocol/src/protocol.rs`, so it will be available
via `codex app-server`, as well.
For consistency, I also updated `ExecApprovalElicitRequestParams` in
`codex-rs/mcp-server/src/exec_approval.rs` to include this field under
the name `codex_parsed_cmd`, as that struct already has a number of
special `codex_*` fields. Note this is the code for when Codex is used
as an MCP _server_ and therefore has to conform to the official spec for
an MCP elicitation type.
Note these two types were identical, so it seems clear to standardize on the one in `codex_protocol` and eliminate the `Into` stuff.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/5218).
* #5222
* __->__ #5218
1. If Codex detects that a `codex mcp add -url …` server supports oauth,
it will auto-initiate the login flow.
2. If the TUI starts and a MCP server supports oauth but isn't logged
in, it will give the user an explicit warning telling them to log in.
Add proper feature flag instead of having custom flags for everything.
This is just for experimental/wip part of the code
It can be used through CLI:
```bash
codex --enable unified_exec --disable view_image_tool
```
Or in the `config.toml`
```toml
# Global toggles applied to every profile unless overridden.
[features]
apply_patch_freeform = true
view_image_tool = false
```
Follow-up:
In a following PR, the goal is to have a default have `bundles` of
features that we can associate to a model
This adds a queryable auth status for MCP servers which is useful:
1. To determine whether a streamable HTTP server supports auth or not
based on whether or not it supports RFC 8414-3.2
2. Allow us to build a better user experience on top of MCP status
This lets users/companies explicitly choose whether to force/disallow
the keyring/fallback file storage for mcp credentials.
People who develop with Codex will want to use this until we sign
binaries or else each ad-hoc debug builds will require keychain access
on every build. I don't love this and am open to other ideas for how to
handle that.
```toml
mcp_oauth_credentials_store = "auto"
mcp_oauth_credentials_store = "file"
mcp_oauth_credentials_store = "keyrung"
```
Defaults to `auto`
We use to put the review prompt in the first user message as well to
bypass statsig overrides, but now that's been resolved and instructions
are being respected, so we're duplicating the review instructions.
In the past, we were treating `input exceeded context window` as a
streaming error and retrying on it. Retrying on it has no point because
it won't change the behavior. In this PR, we surface the error to the
client without retry and also send a token count event to indicate that
the context window is full.
<img width="650" height="125" alt="image"
src="https://github.com/user-attachments/assets/c26b1213-4c27-4bfc-90f4-51a270a3efd5"
/>
# Tool System Refactor
- Centralizes tool definitions and execution in `core/src/tools/*`:
specs (`spec.rs`), handlers (`handlers/*`), router (`router.rs`),
registry/dispatch (`registry.rs`), and shared context (`context.rs`).
One registry now builds the model-visible tool list and binds handlers.
- Router converts model responses to tool calls; Registry dispatches
with consistent telemetry via `codex-rs/otel` and unified error
handling. Function, Local Shell, MCP, and experimental `unified_exec`
all flow through this path; legacy shell aliases still work.
- Rationale: reduce per‑tool boilerplate, keep spec/handler in sync, and
make adding tools predictable and testable.
Example: `read_file`
- Spec: `core/src/tools/spec.rs` (see `create_read_file_tool`,
registered by `build_specs`).
- Handler: `core/src/tools/handlers/read_file.rs` (absolute `file_path`,
1‑indexed `offset`, `limit`, `L#: ` prefixes, safe truncation).
- E2E test: `core/tests/suite/read_file.rs` validates the tool returns
the requested lines.
## Next steps:
- Decompose `handle_container_exec_with_params`
- Add parallel tool calls
# Extract and Centralize Sandboxing
- Goal: Improve safety and clarity by centralizing sandbox planning and
execution.
- Approach:
- Add planner (ExecPlan) and backend registry (Direct/Seatbelt/Linux)
with run_with_plan.
- Refactor codex.rs to plan-then-execute; handle failures/escalation via
the plan.
- Delegate apply_patch to the codex binary and run it with an empty env
for determinism.
We continue the separation between `codex app-server` and `codex
mcp-server`.
In particular, we introduce a new crate, `codex-app-server-protocol`,
and migrate `codex-rs/protocol/src/mcp_protocol.rs` into it, renaming it
`codex-rs/app-server-protocol/src/protocol.rs`.
Because `ConversationId` was defined in `mcp_protocol.rs`, we move it
into its own file, `codex-rs/protocol/src/conversation_id.rs`, and
because it is referenced in a ton of places, we have to touch a lot of
files as part of this PR.
We also decide to get away from proper JSON-RPC 2.0 semantics, so we
also introduce `codex-rs/app-server-protocol/src/jsonrpc_lite.rs`, which
is basically the same `JSONRPCMessage` type defined in `mcp-types`
except with all of the `"jsonrpc": "2.0"` removed.
Getting rid of `"jsonrpc": "2.0"` makes our serialization logic
considerably simpler, as we can lean heavier on serde to serialize
directly into the wire format that we use now.
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
The [official Rust
SDK](57fc428c57)
has come a long way since we first started our mcp client implementation
5 months ago and, today, it is much more complete than our own
stdio-only implementation.
This PR introduces a new config flag `experimental_use_rmcp_client`
which will use a new mcp client powered by the sdk instead of our own.
To keep this PR simple, I've only implemented the same stdio MCP
functionality that we had but will expand on it with future PRs.
---------
Co-authored-by: pakrym-oai <pakrym@openai.com>
Extracting tasks in a module and start abstraction behind a Trait (more
to come on this but each task will be tackled in a dedicated PR)
The goal was to drop the ActiveTask and to have a (potentially) set of
tasks during each turn
## Current State Observations
- `Session` currently holds many unrelated responsibilities (history,
approval queues, task handles, rollout recorder, shell discovery, token
tracking, etc.), making it hard to reason about ownership and lifetimes.
- The anonymous `State` struct inside `codex.rs` mixes session-long data
with turn-scoped queues and approval bookkeeping.
- Turn execution (`run_task`) relies on ad-hoc local variables that
should conceptually belong to a per-turn state object.
- External modules (`codex::compact`, tests) frequently poke the raw
`Session.state` mutex, which couples them to implementation details.
- Interrupts, approvals, and rollout persistence all have bespoke
cleanup paths, contributing to subtle bugs when a turn is aborted
mid-flight.
## Desired End State
- Keep a slim `Session` object that acts as the orchestrator and façade.
It should expose a focused API (submit, approvals, interrupts, event
emission) without storing unrelated fields directly.
- Introduce a `state` module that encapsulates all mutable data
structures:
- `SessionState`: session-persistent data (history, approved commands,
token/rate-limit info, maybe user preferences).
- `ActiveTurn`: metadata for the currently running turn (sub-id, task
kind, abort handle) and an `Arc<TurnState>`.
- `TurnState`: all turn-scoped pieces (pending inputs, approval waiters,
diff tracker, review history, auto-compact flags, last agent message,
outstanding tool call bookkeeping).
- Group long-lived helpers/managers into a dedicated `SessionServices`
struct so `Session` does not accumulate "random" fields.
- Provide clear, lock-safe APIs so other modules never touch raw
mutexes.
- Ensure every turn creates/drops a `TurnState` and that
interrupts/finishes delegate cleanup to it.