This PR fixes things so that:
* when the `BottomPane` is in the `StatusIndicator` state, the border
should be dim
* when the `BottomPane` does not have input focus, the border should be
dim
To make it easier to enforce this invariant, this PR introduces
`BottomPane::set_state()` that will:
* update `self.state`
* call `update_border_for_input_focus()`
* request a repaint
This should make it easier to enforce other updates for state changes
going forward.
As shown in the screenshot, we now include reasoning messages from the
model in the TUI under the heading "codex reasoning":

To ensure these are visible by default when using `o4-mini`, this also
changes the default value for `summary` (formerly `generate_summary`,
which is deprecated in favor of `summary` according to the docs) from
unset to `"auto"`.
The TypeScript CLI already has support for including the contents of
`AGENTS.md` in the instructions sent with the first turn of a
conversation. This PR brings this functionality to the Rust CLI.
To be considered, `AGENTS.md` must be in the `cwd` of the session, or in
one of the parent folders up to a Git/filesystem root (whichever is
encountered first).
By default, a maximum of 32 KiB of `AGENTS.md` will be included, though
this is configurable using the new-in-this-PR `project_doc_max_bytes`
option in `config.toml`.
When using Codex to develop Codex itself, I noticed that sometimes it
would try to add `#[ignore]` to the following tests:
```
keeps_previous_response_id_between_tasks()
retries_on_early_close()
```
Both of these tests start a `MockServer` that launches an HTTP server on
an ephemeral port and requires network access to hit it, which the
Seatbelt policy associated with `--full-auto` correctly denies. If I
wasn't paying attention to the code that Codex was generating, one of
these `#[ignore]` annotations could have slipped into the codebase,
effectively disabling the test for everyone.
To that end, this PR enables an experimental environment variable named
`CODEX_SANDBOX_NETWORK_DISABLED` that is set to `1` if the
`SandboxPolicy` used to spawn the process does not have full network
access. I say it is "experimental" because I'm not convinced this API is
quite right, but we need to start somewhere. (It might be more
appropriate to have an env var like `CODEX_SANDBOX=full-auto`, but the
challenge is that our newer `SandboxPolicy` abstraction does not map to
a simple set of enums like in the TypeScript CLI.)
We leverage this new functionality by adding the following code to the
aforementioned tests as a way to "dynamically disable" them:
```rust
if std::env::var(CODEX_SANDBOX_NETWORK_DISABLED_ENV_VAR).is_ok() {
println!(
"Skipping test because it cannot execute when network is disabled in a Codex sandbox."
);
return;
}
```
We can use the `debug seatbelt --full-auto` command to verify that
`cargo test` fails when run under Seatbelt prior to this change:
```
$ cargo run --bin codex -- debug seatbelt --full-auto -- cargo test
---- keeps_previous_response_id_between_tasks stdout ----
thread 'keeps_previous_response_id_between_tasks' panicked at /Users/mbolin/.cargo/registry/src/index.crates.io-1949cf8c6b5b557f/wiremock-0.6.3/src/mock_server/builder.rs:107:46:
Failed to bind an OS port for a mock server.: Os { code: 1, kind: PermissionDenied, message: "Operation not permitted" }
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
failures:
keeps_previous_response_id_between_tasks
test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s
error: test failed, to rerun pass `-p codex-core --test previous_response_id`
```
Though after this change, the above command succeeds! This means that,
going forward, when Codex operates on Codex itself, when it runs `cargo
test`, only "real failures" should cause the command to fail.
As part of this change, I decided to tighten up the codepaths for
running `exec()` for shell tool calls. In particular, we do it in `core`
for the main Codex business logic itself, but we also expose this logic
via `debug` subcommands in the CLI in the `cli` crate. The logic for the
`debug` subcommands was not quite as faithful to the true business logic
as I liked, so I:
* refactored a bit of the Linux code, splitting `linux.rs` into
`linux_exec.rs` and `landlock.rs` in the `core` crate.
* gating less code behind `#[cfg(target_os = "linux")]` because such
code does not get built by default when I develop on Mac, which means I
either have to build the code in Docker or wait for CI signal
* introduced `macro_rules! configure_command` in `exec.rs` so we can
have both sync and async versions of this code. The synchronous version
seems more appropriate for straight threads or potentially fork/exec.
Noticed that when pasting multi-line blocks, each newline was treated
like a new submission.
Update tui to handle Paste directly and map newlines to shift+enter.
# Test
Copied this into clipboard:
```
Do nothing.
Explain this repo to me.
```
Pasted in and saw multi-line input. Hitting Enter then submitted the
full block.
This PR is a straight refactor so that creating the `Child` process for
an `shell` tool call and consuming its output can be separate concerns.
For the actual tool call, we will always apply
`consume_truncated_output()`, but for the top-level debug commands in
the CLI (e.g., `debug seatbelt` and `debug landlock`), we only want to
use the `spawn_child()` part of `exec()`.
We want the subcommands to match the `shell` tool call usage as
faithfully as possible. This becomes more important when we introduce a
new parameter to `spawn_child()` in
https://github.com/openai/codex/pull/879.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/878).
* #879
* __->__ #878
I inadvertently regressed support for the Responses API when adding
support for the chat completions API in
https://github.com/openai/codex/pull/862. This should get both APIs
working again, but the chat completions codepath seems more complex than
necessary. I'll try to clean that up shortly, but I want to get things
working again ASAP.
This is a substantial PR to add support for the chat completions API,
which in turn makes it possible to use non-OpenAI model providers (just
like in the TypeScript CLI):
* It moves a number of structs from `client.rs` to `client_common.rs` so
they can be shared.
* It introduces support for the chat completions API in
`chat_completions.rs`.
* It updates `ModelProviderInfo` so that `env_key` is `Option<String>`
instead of `String` (for e.g., ollama) and adds a `wire_api` field
* It updates `client.rs` to choose between `stream_responses()` and
`stream_chat_completions()` based on the `wire_api` for the
`ModelProviderInfo`
* It updates the `exec` and TUI CLIs to no longer fail if the
`OPENAI_API_KEY` environment variable is not set
* It updates the TUI so that `EventMsg::Error` is displayed more
prominently when it occurs, particularly now that it is important to
alert users to the `CodexErr::EnvVar` variant.
* `CodexErr::EnvVar` was updated to include an optional `instructions`
field so we can preserve the behavior where we direct users to
https://platform.openai.com if `OPENAI_API_KEY` is not set.
* Cleaned up the "welcome message" in the TUI to ensure the model
provider is displayed.
* Updated the docs in `codex-rs/README.md`.
To exercise the chat completions API from OpenAI models, I added the
following to my `config.toml`:
```toml
model = "gpt-4o"
model_provider = "openai-chat-completions"
[model_providers.openai-chat-completions]
name = "OpenAI using Chat Completions"
base_url = "https://api.openai.com/v1"
env_key = "OPENAI_API_KEY"
wire_api = "chat"
```
Though to test a non-OpenAI provider, I installed ollama with mistral
locally on my Mac because ChatGPT said that would be a good match for my
hardware:
```shell
brew install ollama
ollama serve
ollama pull mistral
```
Then I added the following to my `~/.codex/config.toml`:
```toml
model = "mistral"
model_provider = "ollama"
```
Note this code could certainly use more test coverage, but I want to get
this in so folks can start playing with it.
For reference, I believe https://github.com/openai/codex/pull/247 was
roughly the comparable PR on the TypeScript side.
https://github.com/openai/codex/pull/855 added the clippy warning to
disallow `unwrap()`, but apparently we were not verifying that tests
were "clippy clean" in CI, so I ended up with a lot of local errors in
VS Code.
This turns on the check in CI and fixes the offenders.
I noticed that sometimes I would enter a new message, but it would not
show up in the conversation history. Even if I focused the conversation
history and tried to scroll it to the bottom, I could not bring it into
view. At first, I was concerned that messages were not making it to the
UI layer, but I added debug statements and verified that was not the
issue.
It turned out that, previous to this PR, lines that are wider than the
viewport take up multiple lines of vertical space because `wrap()` was
set on the `Paragraph` inside the scroll pane. Unfortunately, that broke
our "scrollbar math" that assumed each `Line` contributes one line of
height in the UI.
This PR removes the `wrap()`, but introduces a new issue, which is that
now you cannot see long lines without resizing your terminal window. For
now, I filed an issue here:
https://github.com/openai/codex/issues/869
I think the long-term fix is to fix our math so it calculates the height
of a `Line` after it is wrapped given the current width of the viewport.
Sets submodules to use workspace lints. Added denying unwrap as a
workspace level lint, which found a couple of cases where we could have
propagated errors. Also manually labeled ones that were fine by my eye.
This is the first step in supporting other model providers in the Rust
CLI. Specifically, this PR adds support for the new entries in `Config`
and `ConfigOverrides` to specify a `ModelProviderInfo`, which is the
basic config needed for an LLM provider. This PR does not get us all the
way there yet because `client.rs` still categorically appends
`/responses` to the URL and expects the endpoint to support the OpenAI
Responses API. Will fix that next!
I discovered that I accidentally introduced a change in
https://github.com/openai/codex/pull/829 where we load a fresh `Config`
in the middle of `codex.rs`:
c3e10e180a/codex-rs/core/src/codex.rs (L515-L522)
This is not good because the `Config` could differ from the one that has
the user's overrides specified from the CLI. Also, in unit tests, it
means the `Config` was picking up my personal settings as opposed to
using a vanilla config, which was problematic.
This PR cleans things up by moving the common case where
`Op::ConfigureSession` is derived from `Config` (originally done in
`codex_wrapper.rs`) and making it the standard way to initialize `Codex`
by putting it in `Codex::spawn()`. Note this also eliminates quite a bit
of boilerplate from the tests and relieves the caller of the
responsibility of minting out unique IDs when invoking `submit()`.
These abstractions were originally created exclusively for the REPL,
which was removed in https://github.com/openai/codex/pull/754.
Currently, the create some unnecessary Tokio tasks, so we are better off
without them. (We can always bring this back if we have a new use case.)
This adds support for saving transcripts when using the Rust CLI. Like
the TypeScript CLI, it saves the transcript to `~/.codex/sessions`,
though it uses JSONL for the file format (and `.jsonl` for the file
extension) so that even if Codex crashes, what was written to the
`.jsonl` file should generally still be valid JSONL content.
We now impose a 10s timeout on the initial `tools/list` request to an
MCP server. We do not apply a timeout for other types of requests yet,
but we should start enforcing those, as well.
This introduces the use of the `tui-markdown` crate to parse an
assistant message as Markdown and style it using ANSI for a better user
experience. As shown in the screenshot below, it has support for syntax
highlighting for _tagged_ fenced code blocks:
<img width="907" alt="image"
src="https://github.com/user-attachments/assets/900dc229-80bb-46e8-b1bb-efee4c70ba3c"
/>
That said, `tui-markdown` is not as configurable (or stylish!) as
https://www.npmjs.com/package/marked-terminal, which is what we use in
the TypeScript CLI. In particular:
* The styles are hardcoded and `tui_markdown::from_str()` does not take
any options whatsoever. It uses "bold white" for inline code style which
does not stand out as much as the yellow used by `marked-terminal`:
65402cbda7/tui-markdown/src/lib.rs (L464)
I asked Codex to take a first pass at this and it came up with:
https://github.com/joshka/tui-markdown/pull/80
* If a fenced code block is not tagged, then it does not get
highlighted. I would rather add some logic here:
65402cbda7/tui-markdown/src/lib.rs (L262)
that uses something like https://pypi.org/project/guesslang/ to examine
the value of `text` and try to use the appropriate syntax highlighter.
* When we have a fenced code block, we do not want to show the opening
and closing triple backticks in the output.
To unblock ourselves, we might want to bundle our own fork of
`tui-markdown` temporarily until we figure out what the shape of the API
should be and then try to upstream it.
Some effects of this change:
- New formatting changes across many files. No functionality changes
should occur from that.
- Calls to `set_env` are considered unsafe, since this only happens in
tests we wrap them in `unsafe` blocks
I started this PR because I wanted to share the `format_duration()`
utility function in `codex-rs/exec/src/event_processor.rs` with the TUI.
The question was: where to put it?
`core` should have as few dependencies as possible, so moving it there
would introduce a dependency on `chrono`, which seemed undesirable.
`core` already had this `cli` feature to deal with a similar situation
around sharing common utility functions, so I decided to:
* make `core` feature-free
* introduce `common`
* `common` can have as many "special interest" features as it needs,
each of which can declare their own deps
* the first two features of common are `cli` and `elapsed`
In practice, this meant updating a number of `Cargo.toml` files,
replacing this line:
```toml
codex-core = { path = "../core", features = ["cli"] }
```
with these:
```toml
codex-core = { path = "../core" }
codex-common = { path = "../common", features = ["cli"] }
```
Moving `format_duration()` into its own file gave it some "breathing
room" to add a unit test, so I had Codex generate some tests and new
support for durations over 1 minute.
Out of the box, we will make `/` the only official "escape sequence" for
commands in the Rust TUI. We will look to support `q` (or any string you
want to use as a "macro") via a plugin, but not make it part of the
default experience.
Existing `q` users will have to get by with `ctrl+d` for now.
https://github.com/openai/codex/pull/829 noted it introduced a circular
dep between `codex.rs` and `mcp_tool_call.rs`. This attempts to clean
things up: the circular dep still exists, but at least all the fields of
`Session` are private again.
This adds initial support for MCP servers in the style of Claude Desktop
and Cursor. Note this PR is the bare minimum to get things working end
to end: all configured MCP servers are launched every time Codex is run,
there is no recovery for MCP servers that crash, etc.
(Also, I took some shortcuts to change some fields of `Session` to be
`pub(crate)`, which also means there are circular deps between
`codex.rs` and `mcp_tool_call.rs`, but I will clean that up in a
subsequent PR.)
`codex-rs/README.md` is updated as part of this PR to explain how to use
this feature. There is a bit of plumbing to route the new settings from
`Config` to the business logic in `codex.rs`. The most significant
chunks for new code are in `mcp_connection_manager.rs` (which defines
the `McpConnectionManager` struct) and `mcp_tool_call.rs`, which is
responsible for tool calls.
This PR also introduces new `McpToolCallBegin` and `McpToolCallEnd`
event types to the protocol, but does not add any handlers for them.
(See https://github.com/openai/codex/pull/836 for initial usage.)
To test, I added the following to my `~/.codex/config.toml`:
```toml
# Local build of https://github.com/hideya/mcp-server-weather-js
[mcp_servers.weather]
command = "/Users/mbolin/code/mcp-server-weather-js/dist/index.js"
args = []
```
And then I ran the following:
```
codex-rs$ cargo run --bin codex exec 'what is the weather in san francisco'
[2025-05-06T22:40:05] Task started: 1
[2025-05-06T22:40:18] Agent message: Here’s the latest National Weather Service forecast for San Francisco (downtown, near 37.77° N, 122.42° W):
This Afternoon (Tue):
• Sunny, high near 69 °F
• West-southwest wind around 12 mph
Tonight:
• Partly cloudy, low around 52 °F
• SW wind 7–10 mph
...
```
Note that Codex itself is not able to make network calls, so it would
not normally be able to get live weather information like this. However,
the weather MCP is [currently] not run under the Codex sandbox, so it is
able to hit `api.weather.gov` and fetch current weather information.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/829).
* #836
* __->__ #829
I discovered that `cargo build` worked for the entire workspace, but not
for the `mcp-client` or `core` crates.
* `mcp-client` failed to build because it underspecified the set of
features it needed from `tokio`.
* `core` failed to build because it was using a "feature" of its own
crate in the default, no-feature version.
This PR fixes the builds and adds a check in CI to defend against this
sort of thing going forward.
Cleans up the signature for `new_stdio_client()` to more closely mirror
how MCP servers are declared in config files (`command`, `args`, `env`).
Also takes a cue from Claude Code where the MCP server is launched with
a restricted `env` so that it only includes "safe" things like `USER`
and `PATH` (see the `create_env_for_mcp_server()` function introduced in
this PR for details) by default, as it is common for developers to have
sensitive API keys present in their environment that should only be
forwarded to the MCP server when the user has explicitly configured it
to do so.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/831).
* #829
* __->__ #831
This PR introduces an initial `McpClient` that we will use to give Codex
itself programmatic access to foreign MCPs. This does not wire it up in
Codex itself yet, but the new `mcp-client` crate includes a `main.rs`
for basic testing for now.
Manually tested by sending a `tools/list` request to Codex's own MCP
server:
```
codex-rs$ cargo build
codex-rs$ cargo run --bin codex-mcp-client ./target/debug/codex-mcp-server
{
"tools": [
{
"description": "Run a Codex session. Accepts configuration parameters matching the Codex Config struct.",
"inputSchema": {
"properties": {
"approval-policy": {
"description": "Execution approval policy expressed as the kebab-case variant name (`unless-allow-listed`, `auto-edit`, `on-failure`, `never`).",
"enum": [
"auto-edit",
"unless-allow-listed",
"on-failure",
"never"
],
"type": "string"
},
"cwd": {
"description": "Working directory for the session. If relative, it is resolved against the server process's current working directory.",
"type": "string"
},
"disable-response-storage": {
"description": "Disable server-side response storage.",
"type": "boolean"
},
"model": {
"description": "Optional override for the model name (e.g. \"o3\", \"o4-mini\")",
"type": "string"
},
"prompt": {
"description": "The *initial user prompt* to start the Codex conversation.",
"type": "string"
},
"sandbox-permissions": {
"description": "Sandbox permissions using the same string values accepted by the CLI (e.g. \"disk-write-cwd\", \"network-full-access\").",
"items": {
"enum": [
"disk-full-read-access",
"disk-write-cwd",
"disk-write-platform-user-temp-folder",
"disk-write-platform-global-temp-folder",
"disk-full-write-access",
"network-full-access"
],
"type": "string"
},
"type": "array"
}
},
"required": [
"prompt"
],
"type": "object"
},
"name": "codex"
}
]
}
```
This PR replaces the placeholder `"echo"` tool call in the MCP server
with a `"codex"` tool that calls Codex. Events such as
`ExecApprovalRequest` and `ApplyPatchApprovalRequest` are not handled
properly yet, but I have `approval_policy = "never"` set in my
`~/.codex/config.toml` such that those codepaths are not exercised.
The schema for this MPC tool is defined by a new `CodexToolCallParam`
struct introduced in this PR. It is fairly similar to `ConfigOverrides`,
as the param is used to help create the `Config` used to start the Codex
session, though it also includes the `prompt` used to kick off the
session.
This PR also introduces the use of the third-party `schemars` crate to
generate the JSON schema, which is verified in the
`verify_codex_tool_json_schema()` unit test.
Events that are dispatched during the Codex session are sent back to the
MCP client as MCP notifications. This gives the client a way to monitor
progress as the tool call itself may take minutes to complete depending
on the complexity of the task requested by the user.
In the video below, I launched the server via:
```shell
mcp-server$ RUST_LOG=debug npx @modelcontextprotocol/inspector cargo run --
```
In the video, you can see the flow of:
* requesting the list of tools
* choosing the **codex** tool
* entering a value for **prompt** and then making the tool call
Note that I left the other fields blank because when unspecified, the
values in my `~/.codex/config.toml` were used:
https://github.com/user-attachments/assets/1975058c-b004-43ef-8c8d-800a953b8192
Note that while using the inspector, I did run into
https://github.com/modelcontextprotocol/inspector/issues/293, though the
tip about ensuring I had only one instance of the **MCP Inspector** tab
open in my browser seemed to fix things.
https://github.com/openai/codex/pull/800 kicked off some work to be more
disciplined about honoring the `cwd` param passed in rather than
assuming `std::env::current_dir()` as the `cwd`. As part of this, we
need to ensure `apply_patch` calls honor the appropriate `cwd` as well,
which is significant if the paths in the `apply_patch` arg are not
absolute paths themselves. Failing that:
- The `apply_patch` function call can contain an optional`workdir`
param, so:
- If specified and is an absolute path, it should be used to resolve
relative paths
- If specified and is a relative path, should be resolved against
`Config.cwd` and then any relative paths will be resolved against the
result
- If `workdir` is not specified on the function call, relative paths
should be resolved against `Config.cwd`
Note that we had a similar issue in the TypeScript CLI that was fixed in
https://github.com/openai/codex/pull/556.
As part of the fix, this PR introduces `ApplyPatchAction` so clients can
deal with that instead of the raw `HashMap<PathBuf,
ApplyPatchFileChange>`. This enables us to enforce, by construction,
that all paths contained in the `ApplyPatchAction` are absolute paths.
https://github.com/openai/codex/pull/800 made `cwd` a property of
`Config` and made it so the `cwd` is not necessarily
`std::env::current_dir()`. As such, `is_inside_git_repo()` should check
`Config.cwd` rather than `std::env::current_dir()`.
This PR updates `is_inside_git_repo()` to take `Config` instead of an
arbitrary `PathBuf` to force the check to operate on a `Config` where
`cwd` has been resolved to what the user specified.
In order to expose Codex via an MCP server, I realized that we should be
taking `cwd` as a parameter rather than assuming
`std::env::current_dir()` as the `cwd`. Specifically, the user may want
to start a session in a directory other than the one where the MCP
server has been started.
This PR makes `cwd: PathBuf` a required field of `Session` and threads
it all the way through, though I think there is still an issue with not
honoring `workdir` for `apply_patch`, which is something we also had to
fix in the TypeScript version: https://github.com/openai/codex/pull/556.
This also adds `-C`/`--cd` to change the cwd via the command line.
To test, I ran:
```
cargo run --bin codex -- exec -C /tmp 'show the output of ls'
```
and verified it showed the contents of my `/tmp` folder instead of
`$PWD`.
https://github.com/openai/codex/pull/793 had important information on
the `notify` config option that seemed worth memorializing, so this PR
updates the documentation about all of the configurable options in
`~/.codex/config.toml`.
With this change, you can specify a program that will be executed to get
notified about events generated by Codex. The notification info will be
packaged as a JSON object. The supported notification types are defined
by the `UserNotification` enum introduced in this PR. Initially, it
contains only one variant, `AgentTurnComplete`:
```rust
pub(crate) enum UserNotification {
#[serde(rename_all = "kebab-case")]
AgentTurnComplete {
turn_id: String,
/// Messages that the user sent to the agent to initiate the turn.
input_messages: Vec<String>,
/// The last message sent by the assistant in the turn.
last_assistant_message: Option<String>,
},
}
```
This is intended to support the common case when a "turn" ends, which
often means it is now your chance to give Codex further instructions.
For example, I have the following in my `~/.codex/config.toml`:
```toml
notify = ["python3", "/Users/mbolin/.codex/notify.py"]
```
I created my own custom notifier script that calls out to
[terminal-notifier](https://github.com/julienXX/terminal-notifier) to
show a desktop push notification on macOS. Contents of `notify.py`:
```python
#!/usr/bin/env python3
import json
import subprocess
import sys
def main() -> int:
if len(sys.argv) != 2:
print("Usage: notify.py <NOTIFICATION_JSON>")
return 1
try:
notification = json.loads(sys.argv[1])
except json.JSONDecodeError:
return 1
match notification_type := notification.get("type"):
case "agent-turn-complete":
assistant_message = notification.get("last-assistant-message")
if assistant_message:
title = f"Codex: {assistant_message}"
else:
title = "Codex: Turn Complete!"
input_messages = notification.get("input_messages", [])
message = " ".join(input_messages)
title += message
case _:
print(f"not sending a push notification for: {notification_type}")
return 0
subprocess.check_output(
[
"terminal-notifier",
"-title",
title,
"-message",
message,
"-group",
"codex",
"-ignoreDnD",
"-activate",
"com.googlecode.iterm2",
]
)
return 0
if __name__ == "__main__":
sys.exit(main())
```
For reference, here are related PRs that tried to add this functionality
to the TypeScript version of the Codex CLI:
* https://github.com/openai/codex/pull/160
* https://github.com/openai/codex/pull/498
While creating a basic MCP server in
https://github.com/openai/codex/pull/792, I discovered a number of bugs
with the initial `mcp-types` crate that I needed to fix in order to
implement the server.
For example, I discovered that when serializing a message, `"jsonrpc":
"2.0"` was not being included.
I changed the codegen so that the field is added as:
```rust
#[serde(rename = "jsonrpc", default = "default_jsonrpc")]
pub jsonrpc: String,
```
This ensures that the field is serialized as `"2.0"`, though the field
still has to be assigned, which is tedious. I may experiment with
`Default` or something else in the future. (I also considered creating a
custom serializer, but I'm not sure it's worth the trouble.)
While here, I also added `MCP_SCHEMA_VERSION` and `JSONRPC_VERSION` as
`pub const`s for the crate.
I also discovered that MCP rejects sending `null` for optional fields,
so I had to add `#[serde(skip_serializing_if = "Option::is_none")]` on
`Option` fields.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/791).
* #792
* __->__ #791
This adds our own `mcp-types` crate to our Cargo workspace. We vendor in
the
[`2025-03-26/schema.json`](05f2045136/schema/2025-03-26/schema.json)
from the MCP repo and introduce a `generate_mcp_types.py` script to
codegen the `lib.rs` from the JSON schema.
Test coverage is currently light, but I plan to refine things as we
start making use of this crate.
And yes, I am aware that
https://github.com/modelcontextprotocol/rust-sdk exists, though the
published https://crates.io/crates/rmcp appears to be a competing
effort. While things are up in the air, it seems better for us to
control our own version of this code.
Incidentally, Codex did a lot of the work for this PR. I told it to
never edit `lib.rs` directly and instead to update
`generate_mcp_types.py` and then re-run it to update `lib.rs`. It
followed these instructions and once things were working end-to-end, I
iteratively asked for changes to the tests until the API looked
reasonable (and the code worked). Codex was responsible for figuring out
what to do to `generate_mcp_types.py` to achieve the requested test/API
changes.
For now, keep things simple such that we never update the `version` in
the `Cargo.toml` for the workspace root on the `main` branch. Instead,
create a new branch for a release, push one commit that updates the
`version`, and then tag that branch to kick off a release.
To test, I ran this script and created this release job:
https://github.com/openai/codex/actions/runs/14762580641
The generated DotSlash file has URLs that refer to
`https://github.com/openai/codex/releases/`, so let's set
`prerelease:false` (but keep `draft:true` for now) so those URLs should
work.
Also updated `version` in Cargo workspace so I will kick off a build
once this lands.
@oai-ragona and I discussed it, and we feel the REPL crate has served
its purpose, so we're going to delete the code and future archaeologists
can find it in Git history.
Apparently I made two key mistakes in
https://github.com/openai/codex/pull/740 (fixed in this PR):
* I forgot to redefine `$dest` in the `Stage Linux-only artifacts` step
* I did not define the `if` check correctly in the `Stage Linux-only
artifacts` step
This fixes both of those issues and bumps the workspace version to
`0.0.2504292006` in preparation for another release attempt.
This introduces a standalone executable that run the equivalent of the
`codex debug landlock` subcommand and updates `rust-release.yml` to
include it in the release.
The idea is that we will include this small binary with the TypeScript
CLI to provide support for Linux sandboxing.
Taking a pass at building artifacts per platform so we can consider
different distribution strategies that don't require users to install
the full `cargo` toolchain.
Right now this grabs just the `codex-repl` and `codex-tui` bins for 5
different targets and bundles them into a draft release. I think a
clearly marked pre-release set of artifacts will unblock the next step
of testing.