The output of an MCP server tool call can be one of several types, but
to date, we treated all outputs as text by showing the serialized JSON
as the "tool output" in Codex:
25a9949c49/codex-rs/mcp-types/src/lib.rs (L96-L101)
This PR adds support for the `ImageContent` variant so we can now
display an image output from an MCP tool call.
In making this change, we introduce a new
`ResponseInputItem::McpToolCallOutput` variant so that we can work with
the `mcp_types::CallToolResult` directly when the function call is made
to an MCP server.
Though arguably the more significant change is the introduction of
`HistoryCell::CompletedMcpToolCallWithImageOutput`, which is a cell that
uses `ratatui_image` to render an image into the terminal. To support
this, we introduce `ImageRenderCache`, cache a
`ratatui_image::picker::Picker`, and `ensure_image_cache()` to cache the
appropriate scaled image data and dimensions based on the current
terminal size.
To test, I created a minimal `package.json`:
```json
{
"name": "kitty-mcp",
"version": "1.0.0",
"type": "module",
"description": "MCP that returns image of kitty",
"main": "index.js",
"dependencies": {
"@modelcontextprotocol/sdk": "^1.12.0"
}
}
```
with the following `index.js` to define the MCP server:
```js
#!/usr/bin/env node
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
import { readFile } from "node:fs/promises";
import { join } from "node:path";
const IMAGE_URI = "image://Ada.png";
const server = new McpServer({
name: "Demo",
version: "1.0.0",
});
server.tool(
"get-cat-image",
"If you need a cat image, this tool will provide one.",
async () => ({
content: [
{ type: "image", data: await getAdaPngBase64(), mimeType: "image/png" },
],
})
);
server.resource("Ada the Cat", IMAGE_URI, async (uri) => {
const base64Image = await getAdaPngBase64();
return {
contents: [
{
uri: uri.href,
mimeType: "image/png",
blob: base64Image,
},
],
};
});
async function getAdaPngBase64() {
const __dirname = new URL(".", import.meta.url).pathname;
// From 9705ce2c59/assets/Ada.png
const filePath = join(__dirname, "Ada.png");
const imageData = await readFile(filePath);
const base64Image = imageData.toString("base64");
return base64Image;
}
const transport = new StdioServerTransport();
await server.connect(transport);
```
With the local changes from this PR, I added the following to my
`config.toml`:
```toml
[mcp_servers.kitty]
command = "node"
args = ["/Users/mbolin/code/kitty-mcp/index.js"]
```
Running the TUI from source:
```
cargo run --bin codex -- --model o3 'I need a picture of a cat'
```
I get:
<img width="732" alt="image"
src="https://github.com/user-attachments/assets/bf80b721-9ca0-4d81-aec7-77d6899e2869"
/>
Now, that said, I have only tested in iTerm and there is definitely some
funny business with getting an accurate character-to-pixel ratio
(sometimes the `CompletedMcpToolCallWithImageOutput` thinks it needs 10
rows to render instead of 4), so there is still work to be done here.
This PR introduces support for `-c`/`--config` so users can override
individual config values on the command line using `--config
name=value`. Example:
```
codex --config model=o4-mini
```
Making it possible to set arbitrary config values on the command line
results in a more flexible configuration scheme and makes it easier to
provide single-line examples that can be copy-pasted from documentation.
Effectively, it means there are four levels of configuration for some
values:
- Default value (e.g., `model` currently defaults to `o4-mini`)
- Value in `config.toml` (e.g., user could override the default to be
`model = "o3"` in their `config.toml`)
- Specifying `-c` or `--config` to override `model` (e.g., user can
include `-c model=o3` in their list of args to Codex)
- If available, a config-specific flag can be used, which takes
precedence over `-c` (e.g., user can specify `--model o3` in their list
of args to Codex)
Now that it is possible to specify anything that could be configured in
`config.toml` on the command line using `-c`, we do not need to have a
custom flag for every possible config option (which can clutter the
output of `--help`). To that end, as part of this PR, we drop support
for the `--disable-response-storage` flag, as users can now specify `-c
disable_response_storage=true` to get the equivalent functionality.
Under the hood, this works by loading the `config.toml` into a
`toml::Value`. Then for each `key=value`, we create a small synthetic
TOML file with `value` so that we can run the TOML parser to get the
equivalent `toml::Value`. We then parse `key` to determine the point in
the original `toml::Value` to do the insert/replace. Once all of the
overrides from `-c` args have been applied, the `toml::Value` is
deserialized into a `ConfigToml` and then the `ConfigOverrides` are
applied, as before.
Historically, we spawned the Seatbelt and Landlock sandboxes in
substantially different ways:
For **Seatbelt**, we would run `/usr/bin/sandbox-exec` with our policy
specified as an arg followed by the original command:
d1de7bb383/codex-rs/core/src/exec.rs (L147-L219)
For **Landlock/Seccomp**, we would do
`tokio::runtime::Builder::new_current_thread()`, _invoke
Landlock/Seccomp APIs to modify the permissions of that new thread_, and
then spawn the command:
d1de7bb383/codex-rs/core/src/exec_linux.rs (L28-L49)
While it is neat that Landlock/Seccomp supports applying a policy to
only one thread without having to apply it to the entire process, it
requires us to maintain two different codepaths and is a bit harder to
reason about. The tipping point was
https://github.com/openai/codex/pull/1061, in which we had to start
building up the `env` in an unexpected way for the existing
Landlock/Seccomp approach to continue to work.
This PR overhauls things so that we do similar things for Mac and Linux.
It turned out that we were already building our own "helper binary"
comparable to Mac's `sandbox-exec` as part of the `cli` crate:
d1de7bb383/codex-rs/cli/Cargo.toml (L10-L12)
We originally created this to build a small binary to include with the
Node.js version of the Codex CLI to provide support for Linux
sandboxing.
Though the sticky bit is that, at this point, we still want to deploy
the Rust version of Codex as a single, standalone binary rather than a
CLI and a supporting sandboxing binary. To satisfy this goal, we use
"the arg0 trick," in which we:
* use `std::env::current_exe()` to get the path to the CLI that is
currently running
* use the CLI as the `program` for the `Command`
* set `"codex-linux-sandbox"` as arg0 for the `Command`
A CLI that supports sandboxing should check arg0 at the start of the
program. If it is `"codex-linux-sandbox"`, it must invoke
`codex_linux_sandbox::run_main()`, which runs the CLI as if it were
`codex-linux-sandbox`. When acting as `codex-linux-sandbox`, we make the
appropriate Landlock/Seccomp API calls and then use `execvp(3)` to spawn
the original command, so do _replace_ the process rather than spawn a
subprocess. Incidentally, we do this before starting the Tokio runtime,
so the process should only have one thread when `execvp(3)` is called.
Because the `core` crate that needs to spawn the Linux sandboxing is not
a CLI in its own right, this means that every CLI that includes `core`
and relies on this behavior has to (1) implement it and (2) provide the
path to the sandboxing executable. While the path is almost always
`std::env::current_exe()`, we needed to make this configurable for
integration tests, so `Config` now has a `codex_linux_sandbox_exe:
Option<PathBuf>` property to facilitate threading this through,
introduced in https://github.com/openai/codex/pull/1089.
This common pattern is now captured in
`codex_linux_sandbox::run_with_sandbox()` and all of the `main.rs`
functions that should use it have been updated as part of this PR.
The `codex-linux-sandbox` crate added to the Cargo workspace as part of
this PR now has the bulk of the Landlock/Seccomp logic, which makes
`core` a bit simpler. Indeed, `core/src/exec_linux.rs` and
`core/src/landlock.rs` were removed/ported as part of this PR. I also
moved the unit tests for this code into an integration test,
`linux-sandbox/tests/landlock.rs`, in which I use
`env!("CARGO_BIN_EXE_codex-linux-sandbox")` as the value for
`codex_linux_sandbox_exe` since `std::env::current_exe()` is not
appropriate in that case.
https://github.com/openai/codex/pull/1086 is a work-in-progress to make
Linux sandboxing work more like Seatbelt where, for the command we want
to sandbox, we build up the command and then hand it, and some sandbox
configuration flags, to another command to set up the sandbox and then
run it.
In the case of Seatbelt, macOS provides this helper binary and provides
it at `/usr/bin/sandbox-exec`. For Linux, we have to build our own and
pass it through (which is what #1086 does), so this makes the new
`codex_linux_sandbox_exe` available on `Config` so that it will later be
available in `exec.rs` when we need it in #1086.
To date, when handling `shell` and `local_shell` tool calls, we were
spawning new processes using the environment inherited from the Codex
process itself. This means that the sensitive `OPENAI_API_KEY` that
Codex needs to talk to OpenAI models was made available to everything
run by `shell` and `local_shell`. While there are cases where that might
be useful, it does not seem like a good default.
This PR introduces a complex `shell_environment_policy` config option to
control the `env` used with these tool calls. It is inevitably a bit
complex so that it is possible to override individual components of the
policy so without having to restate the entire thing.
Details are in the updated `README.md` in this PR, but here is the
relevant bit that explains the individual fields of
`shell_environment_policy`:
| Field | Type | Default | Description |
| ------------------------- | -------------------------- | ------- |
-----------------------------------------------------------------------------------------------------------------------------------------------
|
| `inherit` | string | `core` | Starting template for the
environment:<br>`core` (`HOME`, `PATH`, `USER`, …), `all` (clone full
parent env), or `none` (start empty). |
| `ignore_default_excludes` | boolean | `false` | When `false`, Codex
removes any var whose **name** contains `KEY`, `SECRET`, or `TOKEN`
(case-insensitive) before other rules run. |
| `exclude` | array<string> | `[]` | Case-insensitive glob
patterns to drop after the default filter.<br>Examples: `"AWS_*"`,
`"AZURE_*"`. |
| `set` | table<string,string> | `{}` | Explicit key/value
overrides or additions – always win over inherited values. |
| `include_only` | array<string> | `[]` | If non-empty, a
whitelist of patterns; only variables that match _one_ pattern survive
the final step. (Generally used with `inherit = "all"`.) |
In particular, note that the default is `inherit = "core"`, so:
* if you have extra env variables that you want to inherit from the
parent process, use `inherit = "all"` and then specify `include_only`
* if you have extra env variables where you want to hardcode the values,
the default `inherit = "core"` will work fine, but then you need to
specify `set`
This configuration is not battle-tested, so we will probably still have
to play with it a bit. `core/src/exec_env.rs` has the critical business
logic as well as unit tests.
Though if nothing else, previous to this change:
```
$ cargo run --bin codex -- debug seatbelt -- printenv OPENAI_API_KEY
# ...prints OPENAI_API_KEY...
```
But after this change it does not print anything (as desired).
One final thing to call out about this PR is that the
`configure_command!` macro we use in `core/src/exec.rs` has to do some
complex logic with respect to how it builds up the `env` for the process
being spawned under Landlock/seccomp. Specifically, doing
`cmd.env_clear()` followed by `cmd.envs(&$env_map)` (which is arguably
the most intuitive way to do it) caused the Landlock unit tests to fail
because the processes spawned by the unit tests started failing in
unexpected ways! If we forgo `env_clear()` in favor of updating env vars
one at a time, the tests still pass. The comment in the code talks about
this a bit, and while I would like to investigate this more, I need to
move on for the moment, but I do plan to come back to it to fully
understand what is going on. For example, this suggests that we might
not be able to spawn a C program that calls `env_clear()`, which would
be...weird. We may still have to fiddle with our Landlock config if that
is the case.
`config.rs` is already quite long without these definitions. Since they
have no real dependencies of their own, let's move them to their own
file so `config.rs` can focus on the business logic of loading a config.
This introduces an experimental `--output-last-message` flag that can be
used to identify a file where the final message from the agent will be
written. Two use cases:
- Ultimately, we will likely add a `--quiet` option to `exec`, but even
if the user does not want any output written to the terminal, they
probably want to know what the agent did. Writing the output to a file
makes it possible to get that information in a clean way.
- Relatedly, when using `exec` in CI, it is easier to review the
transcript written "normally," (i.e., not as JSON or something with
extra escapes), but getting programmatic access to the last message is
likely helpful, so writing the last message to a file gets the best of
both worlds.
I am calling this "experimental" because it is possible that we are
overfitting and will want a more general solution to this problem that
would justify removing this flag.
I did a bit of research to understand why I could not use my mouse to
drag to select text to copy to the clipboard in iTerm.
Apparently https://github.com/openai/codex/pull/641 to enable mousewheel
scrolling broke this functionality. It seems that, unless we put in a
bit of effort, we can have drag-to-select or scrolling, but not both.
Though if you know the trick to hold down `Option` will dragging with
the mouse in iTerm, you can probably get by with this. (I did not know
about this option prior to researching this issue.)
Nevertheless, users may still prefer to disable mouse capture
altogether, so this PR introduces:
* the ability to set `tui.disable_mouse_capture = true` in `config.toml`
to disable mouse capture
* a new command, `/toggle-mouse-mode` to toggle mouse capture
The new `codex-mini-latest` model expects a new tool with `{"type":
"local_shell"}`. Its contract is similar to the existing `function` tool
with `"name": "shell"`, so this takes the `local_shell` tool call into
`ExecParams` and sends it through the existing
`handle_container_exec_with_params()` code path.
This also adds the following logic when adding the default set of tools
to a request:
```rust
let default_tools = if self.model.starts_with("codex") {
&DEFAULT_CODEX_MODEL_TOOLS
} else {
&DEFAULT_TOOLS
};
```
That is, if the model name starts with `"codex"`, we add `{"type":
"local_shell"}` to the list of tools; otherwise, we add the
aforementioned `shell` tool.
To test this, I ran the TUI with `-m codex-mini-latest` and verified
that it used the `local_shell` tool. Though I also had some entries in
`[mcp_servers]` in my personal `config.toml`. The `codex-mini-latest`
model seemed eager to try the tools from the MCP servers first, so I
have personally commented them out for now, so keep an eye out if you're
testing `codex-mini-latest`!
Perhaps we should include more details with `{"type": "local_shell"}` or
update the following:
fd0b1b0208/codex-rs/core/prompt.md
For reference, the corresponding change in the TypeScript CLI is
https://github.com/openai/codex/pull/951.
This is a large change to support a "history" feature like you would
expect in a shell like Bash.
History events are recorded in `$CODEX_HOME/history.jsonl`. Because it
is a JSONL file, it is straightforward to append new entries (as opposed
to the TypeScript file that uses `$CODEX_HOME/history.json`, so to be
valid JSON, each new entry entails rewriting the entire file). Because
it is possible for there to be multiple instances of Codex CLI writing
to `history.jsonl` at once, we use advisory file locking when working
with `history.jsonl` in `codex-rs/core/src/message_history.rs`.
Because we believe history is a sufficiently useful feature, we enable
it by default. Though to provide some safety, we set the file
permissions of `history.jsonl` to be `o600` so that other users on the
system cannot read the user's history. We do not yet support a default
list of `SENSITIVE_PATTERNS` as the TypeScript CLI does:
3fdf9df133/codex-cli/src/utils/storage/command-history.ts (L10-L17)
We are going to take a more conservative approach to this list in the
Rust CLI. For example, while `/\b[A-Za-z0-9-_]{20,}\b/` might exclude
sensitive information like API tokens, it would also exclude valuable
information such as references to Git commits.
As noted in the updated documentation, users can opt-out of history by
adding the following to `config.toml`:
```toml
[history]
persistence = "none"
```
Because `history.jsonl` could, in theory, be quite large, we take a[n
arguably overly pedantic] approach in reading history entries into
memory. Specifically, we start by telling the client the current number
of entries in the history file (`history_entry_count`) as well as the
inode (`history_log_id`) of `history.jsonl` (see the new fields on
`SessionConfiguredEvent`).
The client is responsible for keeping new entries in memory to create a
"local history," but if the user hits up enough times to go "past" the
end of local history, then the client should use the new
`GetHistoryEntryRequest` in the protocol to fetch older entries.
Specifically, it should pass the `history_log_id` it was given
originally and work backwards from `history_entry_count`. (It should
really fetch history in batches rather than one-at-a-time, but that is
something we can improve upon in subsequent PRs.)
The motivation behind this crazy scheme is that it is designed to defend
against:
* The `history.jsonl` being truncated during the session such that the
index into the history is no longer consistent with what had been read
up to that point. We do not yet have logic to enforce a `max_bytes` for
`history.jsonl`, but once we do, we will aspire to implement it in a way
that should result in a new inode for the file on most systems.
* New items from concurrent Codex CLI sessions amending to the history.
Because, in absence of truncation, `history.jsonl` is an append-only
log, so long as the client reads backwards from `history_entry_count`,
it should always get a consistent view of history. (That said, it will
not be able to read _new_ commands from concurrent sessions, but perhaps
we will introduce a `/` command to reload latest history or something
down the road.)
Admittedly, my testing of this feature thus far has been fairly light. I
expect we will find bugs and introduce enhancements/fixes going forward.
Previously, our GitHub actions specified the Rust toolchain as
`dtolnay/rust-toolchain@stable`, which meant the version could change
out from under us. In this case, the move from 1.86 to 1.87 introduced
new clippy warnings, causing build failures.
Because it will take a little time to fix all the new clippy warnings,
this PR pins things to 1.86 for now to unbreak the build.
It also replaces `io::Error::new(io::ErrorKind::Other)` with
`io::Error::other()` in preparation for 1.87.
For now, this removes the `#[non_exhaustive]` directive on `EventMsg` so
that we are forced to handle all `EventMsg` by default. (We may revisit
this if/when we publish `core/` as a `lib` crate.) For now, it is
helpful to have this as a forcing function because we have effectively
two UIs (`tui` and `exec`) and usually when we add a new variant to
`EventMsg`, we want to be sure that we update both.
More about codespell: https://github.com/codespell-project/codespell .
I personally introduced it to dozens if not hundreds of projects already
and so far only positive feedback.
CI workflow has 'permissions' set only to 'read' so also should be safe.
Let me know if just want to take typo fixes in and get rid of the CI
---------
Signed-off-by: Yaroslav O. Halchenko <debian@onerussian.com>
I believe this test meant to verify that echoing content to `/dev/null`
succeeded, but instead, I believe it was testing the equivalent to `echo
'blah > /dev/null'`.
https://github.com/openai/codex/pull/922 did this for the
`SessionConfigured` enum variant, and I think it is generally helpful to
be able to work with the values as each enum variant as their own type,
so this converts the remaining variants and updates all of the
callsites.
Added a simple unit test to verify that the JSON-serialized version of
`Event` does not have any unexpected nesting.
* update `SessionConfigured` event to include the UUID for the session
* show the UUID in the Rust TUI
* use local timestamps in log files instead of UTC
* include timestamps in log file names for easier discovery
This introduces a much-needed "profile" concept where users can specify
a collection of options under one name and then pass that via
`--profile` to the CLI.
This PR introduces the `ConfigProfile` struct and makes it a field of
`CargoToml`. It further updates
`Config::load_from_base_config_with_overrides()` to respect
`ConfigProfile`, overriding default values where appropriate. A detailed
unit test is added at the end of `config.rs` to verify this behavior.
Details on how to use this feature have also been added to
`codex-rs/README.md`.
I had seen issues where `codex-rs` would not always write files without
me pressuring it to do so, and between that and the report of
https://github.com/openai/codex/issues/900, I decided to look into this
further. I found two serious issues with agent instructions:
(1) We were only sending agent instructions on the first turn, but
looking at the TypeScript code, we should be sending them on every turn.
(2) There was a serious issue where the agent instructions were
frequently lost:
* The TypeScript CLI appears to keep writing `~/.codex/instructions.md`:
55142e3e6c/codex-cli/src/utils/config.ts (L586)
* If `instructions.md` is present, the Rust CLI uses the contents of it
INSTEAD OF the default prompt, even if `instructions.md` is empty:
55142e3e6c/codex-rs/core/src/config.rs (L202-L203)
The combination of these two things means that I have been using
`codex-rs` without these key instructions:
https://github.com/openai/codex/blob/main/codex-rs/core/prompt.md
Looking at the TypeScript code, it appears we should be concatenating
these three items every time (if they exist):
* `prompt.md`
* `~/.codex/instructions.md`
* nearest `AGENTS.md`
This PR fixes things so that:
* `Config.instructions` is `None` if `instructions.md` is empty
* `Payload.instructions` is now `&'a str` instead of `Option<&'a
String>` because we should always have _something_ to send
* `Prompt` now has a `get_full_instructions()` helper that returns a
`Cow<str>` that will always include the agent instructions first.
Adds `expect()` as a denied lint. Same deal applies with `unwrap()`
where we now need to put `#[expect(...` on ones that we legit want. Took
care to enable `expect()` in test contexts.
# Tests
```
cargo fmt
cargo clippy --all-features --all-targets --no-deps -- -D warnings
cargo test
```
As shown in the screenshot, we now include reasoning messages from the
model in the TUI under the heading "codex reasoning":

To ensure these are visible by default when using `o4-mini`, this also
changes the default value for `summary` (formerly `generate_summary`,
which is deprecated in favor of `summary` according to the docs) from
unset to `"auto"`.
The TypeScript CLI already has support for including the contents of
`AGENTS.md` in the instructions sent with the first turn of a
conversation. This PR brings this functionality to the Rust CLI.
To be considered, `AGENTS.md` must be in the `cwd` of the session, or in
one of the parent folders up to a Git/filesystem root (whichever is
encountered first).
By default, a maximum of 32 KiB of `AGENTS.md` will be included, though
this is configurable using the new-in-this-PR `project_doc_max_bytes`
option in `config.toml`.
When using Codex to develop Codex itself, I noticed that sometimes it
would try to add `#[ignore]` to the following tests:
```
keeps_previous_response_id_between_tasks()
retries_on_early_close()
```
Both of these tests start a `MockServer` that launches an HTTP server on
an ephemeral port and requires network access to hit it, which the
Seatbelt policy associated with `--full-auto` correctly denies. If I
wasn't paying attention to the code that Codex was generating, one of
these `#[ignore]` annotations could have slipped into the codebase,
effectively disabling the test for everyone.
To that end, this PR enables an experimental environment variable named
`CODEX_SANDBOX_NETWORK_DISABLED` that is set to `1` if the
`SandboxPolicy` used to spawn the process does not have full network
access. I say it is "experimental" because I'm not convinced this API is
quite right, but we need to start somewhere. (It might be more
appropriate to have an env var like `CODEX_SANDBOX=full-auto`, but the
challenge is that our newer `SandboxPolicy` abstraction does not map to
a simple set of enums like in the TypeScript CLI.)
We leverage this new functionality by adding the following code to the
aforementioned tests as a way to "dynamically disable" them:
```rust
if std::env::var(CODEX_SANDBOX_NETWORK_DISABLED_ENV_VAR).is_ok() {
println!(
"Skipping test because it cannot execute when network is disabled in a Codex sandbox."
);
return;
}
```
We can use the `debug seatbelt --full-auto` command to verify that
`cargo test` fails when run under Seatbelt prior to this change:
```
$ cargo run --bin codex -- debug seatbelt --full-auto -- cargo test
---- keeps_previous_response_id_between_tasks stdout ----
thread 'keeps_previous_response_id_between_tasks' panicked at /Users/mbolin/.cargo/registry/src/index.crates.io-1949cf8c6b5b557f/wiremock-0.6.3/src/mock_server/builder.rs:107:46:
Failed to bind an OS port for a mock server.: Os { code: 1, kind: PermissionDenied, message: "Operation not permitted" }
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
failures:
keeps_previous_response_id_between_tasks
test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out; finished in 0.00s
error: test failed, to rerun pass `-p codex-core --test previous_response_id`
```
Though after this change, the above command succeeds! This means that,
going forward, when Codex operates on Codex itself, when it runs `cargo
test`, only "real failures" should cause the command to fail.
As part of this change, I decided to tighten up the codepaths for
running `exec()` for shell tool calls. In particular, we do it in `core`
for the main Codex business logic itself, but we also expose this logic
via `debug` subcommands in the CLI in the `cli` crate. The logic for the
`debug` subcommands was not quite as faithful to the true business logic
as I liked, so I:
* refactored a bit of the Linux code, splitting `linux.rs` into
`linux_exec.rs` and `landlock.rs` in the `core` crate.
* gating less code behind `#[cfg(target_os = "linux")]` because such
code does not get built by default when I develop on Mac, which means I
either have to build the code in Docker or wait for CI signal
* introduced `macro_rules! configure_command` in `exec.rs` so we can
have both sync and async versions of this code. The synchronous version
seems more appropriate for straight threads or potentially fork/exec.
This PR is a straight refactor so that creating the `Child` process for
an `shell` tool call and consuming its output can be separate concerns.
For the actual tool call, we will always apply
`consume_truncated_output()`, but for the top-level debug commands in
the CLI (e.g., `debug seatbelt` and `debug landlock`), we only want to
use the `spawn_child()` part of `exec()`.
We want the subcommands to match the `shell` tool call usage as
faithfully as possible. This becomes more important when we introduce a
new parameter to `spawn_child()` in
https://github.com/openai/codex/pull/879.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/878).
* #879
* __->__ #878
I inadvertently regressed support for the Responses API when adding
support for the chat completions API in
https://github.com/openai/codex/pull/862. This should get both APIs
working again, but the chat completions codepath seems more complex than
necessary. I'll try to clean that up shortly, but I want to get things
working again ASAP.
This is a substantial PR to add support for the chat completions API,
which in turn makes it possible to use non-OpenAI model providers (just
like in the TypeScript CLI):
* It moves a number of structs from `client.rs` to `client_common.rs` so
they can be shared.
* It introduces support for the chat completions API in
`chat_completions.rs`.
* It updates `ModelProviderInfo` so that `env_key` is `Option<String>`
instead of `String` (for e.g., ollama) and adds a `wire_api` field
* It updates `client.rs` to choose between `stream_responses()` and
`stream_chat_completions()` based on the `wire_api` for the
`ModelProviderInfo`
* It updates the `exec` and TUI CLIs to no longer fail if the
`OPENAI_API_KEY` environment variable is not set
* It updates the TUI so that `EventMsg::Error` is displayed more
prominently when it occurs, particularly now that it is important to
alert users to the `CodexErr::EnvVar` variant.
* `CodexErr::EnvVar` was updated to include an optional `instructions`
field so we can preserve the behavior where we direct users to
https://platform.openai.com if `OPENAI_API_KEY` is not set.
* Cleaned up the "welcome message" in the TUI to ensure the model
provider is displayed.
* Updated the docs in `codex-rs/README.md`.
To exercise the chat completions API from OpenAI models, I added the
following to my `config.toml`:
```toml
model = "gpt-4o"
model_provider = "openai-chat-completions"
[model_providers.openai-chat-completions]
name = "OpenAI using Chat Completions"
base_url = "https://api.openai.com/v1"
env_key = "OPENAI_API_KEY"
wire_api = "chat"
```
Though to test a non-OpenAI provider, I installed ollama with mistral
locally on my Mac because ChatGPT said that would be a good match for my
hardware:
```shell
brew install ollama
ollama serve
ollama pull mistral
```
Then I added the following to my `~/.codex/config.toml`:
```toml
model = "mistral"
model_provider = "ollama"
```
Note this code could certainly use more test coverage, but I want to get
this in so folks can start playing with it.
For reference, I believe https://github.com/openai/codex/pull/247 was
roughly the comparable PR on the TypeScript side.
https://github.com/openai/codex/pull/855 added the clippy warning to
disallow `unwrap()`, but apparently we were not verifying that tests
were "clippy clean" in CI, so I ended up with a lot of local errors in
VS Code.
This turns on the check in CI and fixes the offenders.
Sets submodules to use workspace lints. Added denying unwrap as a
workspace level lint, which found a couple of cases where we could have
propagated errors. Also manually labeled ones that were fine by my eye.
This is the first step in supporting other model providers in the Rust
CLI. Specifically, this PR adds support for the new entries in `Config`
and `ConfigOverrides` to specify a `ModelProviderInfo`, which is the
basic config needed for an LLM provider. This PR does not get us all the
way there yet because `client.rs` still categorically appends
`/responses` to the URL and expects the endpoint to support the OpenAI
Responses API. Will fix that next!
I discovered that I accidentally introduced a change in
https://github.com/openai/codex/pull/829 where we load a fresh `Config`
in the middle of `codex.rs`:
c3e10e180a/codex-rs/core/src/codex.rs (L515-L522)
This is not good because the `Config` could differ from the one that has
the user's overrides specified from the CLI. Also, in unit tests, it
means the `Config` was picking up my personal settings as opposed to
using a vanilla config, which was problematic.
This PR cleans things up by moving the common case where
`Op::ConfigureSession` is derived from `Config` (originally done in
`codex_wrapper.rs`) and making it the standard way to initialize `Codex`
by putting it in `Codex::spawn()`. Note this also eliminates quite a bit
of boilerplate from the tests and relieves the caller of the
responsibility of minting out unique IDs when invoking `submit()`.
These abstractions were originally created exclusively for the REPL,
which was removed in https://github.com/openai/codex/pull/754.
Currently, the create some unnecessary Tokio tasks, so we are better off
without them. (We can always bring this back if we have a new use case.)
This adds support for saving transcripts when using the Rust CLI. Like
the TypeScript CLI, it saves the transcript to `~/.codex/sessions`,
though it uses JSONL for the file format (and `.jsonl` for the file
extension) so that even if Codex crashes, what was written to the
`.jsonl` file should generally still be valid JSONL content.
We now impose a 10s timeout on the initial `tools/list` request to an
MCP server. We do not apply a timeout for other types of requests yet,
but we should start enforcing those, as well.
Some effects of this change:
- New formatting changes across many files. No functionality changes
should occur from that.
- Calls to `set_env` are considered unsafe, since this only happens in
tests we wrap them in `unsafe` blocks
I started this PR because I wanted to share the `format_duration()`
utility function in `codex-rs/exec/src/event_processor.rs` with the TUI.
The question was: where to put it?
`core` should have as few dependencies as possible, so moving it there
would introduce a dependency on `chrono`, which seemed undesirable.
`core` already had this `cli` feature to deal with a similar situation
around sharing common utility functions, so I decided to:
* make `core` feature-free
* introduce `common`
* `common` can have as many "special interest" features as it needs,
each of which can declare their own deps
* the first two features of common are `cli` and `elapsed`
In practice, this meant updating a number of `Cargo.toml` files,
replacing this line:
```toml
codex-core = { path = "../core", features = ["cli"] }
```
with these:
```toml
codex-core = { path = "../core" }
codex-common = { path = "../common", features = ["cli"] }
```
Moving `format_duration()` into its own file gave it some "breathing
room" to add a unit test, so I had Codex generate some tests and new
support for durations over 1 minute.
https://github.com/openai/codex/pull/829 noted it introduced a circular
dep between `codex.rs` and `mcp_tool_call.rs`. This attempts to clean
things up: the circular dep still exists, but at least all the fields of
`Session` are private again.
This adds initial support for MCP servers in the style of Claude Desktop
and Cursor. Note this PR is the bare minimum to get things working end
to end: all configured MCP servers are launched every time Codex is run,
there is no recovery for MCP servers that crash, etc.
(Also, I took some shortcuts to change some fields of `Session` to be
`pub(crate)`, which also means there are circular deps between
`codex.rs` and `mcp_tool_call.rs`, but I will clean that up in a
subsequent PR.)
`codex-rs/README.md` is updated as part of this PR to explain how to use
this feature. There is a bit of plumbing to route the new settings from
`Config` to the business logic in `codex.rs`. The most significant
chunks for new code are in `mcp_connection_manager.rs` (which defines
the `McpConnectionManager` struct) and `mcp_tool_call.rs`, which is
responsible for tool calls.
This PR also introduces new `McpToolCallBegin` and `McpToolCallEnd`
event types to the protocol, but does not add any handlers for them.
(See https://github.com/openai/codex/pull/836 for initial usage.)
To test, I added the following to my `~/.codex/config.toml`:
```toml
# Local build of https://github.com/hideya/mcp-server-weather-js
[mcp_servers.weather]
command = "/Users/mbolin/code/mcp-server-weather-js/dist/index.js"
args = []
```
And then I ran the following:
```
codex-rs$ cargo run --bin codex exec 'what is the weather in san francisco'
[2025-05-06T22:40:05] Task started: 1
[2025-05-06T22:40:18] Agent message: Here’s the latest National Weather Service forecast for San Francisco (downtown, near 37.77° N, 122.42° W):
This Afternoon (Tue):
• Sunny, high near 69 °F
• West-southwest wind around 12 mph
Tonight:
• Partly cloudy, low around 52 °F
• SW wind 7–10 mph
...
```
Note that Codex itself is not able to make network calls, so it would
not normally be able to get live weather information like this. However,
the weather MCP is [currently] not run under the Codex sandbox, so it is
able to hit `api.weather.gov` and fetch current weather information.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/829).
* #836
* __->__ #829
I discovered that `cargo build` worked for the entire workspace, but not
for the `mcp-client` or `core` crates.
* `mcp-client` failed to build because it underspecified the set of
features it needed from `tokio`.
* `core` failed to build because it was using a "feature" of its own
crate in the default, no-feature version.
This PR fixes the builds and adds a check in CI to defend against this
sort of thing going forward.
https://github.com/openai/codex/pull/800 kicked off some work to be more
disciplined about honoring the `cwd` param passed in rather than
assuming `std::env::current_dir()` as the `cwd`. As part of this, we
need to ensure `apply_patch` calls honor the appropriate `cwd` as well,
which is significant if the paths in the `apply_patch` arg are not
absolute paths themselves. Failing that:
- The `apply_patch` function call can contain an optional`workdir`
param, so:
- If specified and is an absolute path, it should be used to resolve
relative paths
- If specified and is a relative path, should be resolved against
`Config.cwd` and then any relative paths will be resolved against the
result
- If `workdir` is not specified on the function call, relative paths
should be resolved against `Config.cwd`
Note that we had a similar issue in the TypeScript CLI that was fixed in
https://github.com/openai/codex/pull/556.
As part of the fix, this PR introduces `ApplyPatchAction` so clients can
deal with that instead of the raw `HashMap<PathBuf,
ApplyPatchFileChange>`. This enables us to enforce, by construction,
that all paths contained in the `ApplyPatchAction` are absolute paths.