Commit Graph

8 Commits

Author SHA1 Message Date
Michael Bolin
f48dd99f22 feat: add support for OpenAI tool type, local_shell (#961)
The new `codex-mini-latest` model expects a new tool with `{"type":
"local_shell"}`. Its contract is similar to the existing `function` tool
with `"name": "shell"`, so this takes the `local_shell` tool call into
`ExecParams` and sends it through the existing
`handle_container_exec_with_params()` code path.

This also adds the following logic when adding the default set of tools
to a request:

```rust
let default_tools = if self.model.starts_with("codex") {
    &DEFAULT_CODEX_MODEL_TOOLS
} else {
    &DEFAULT_TOOLS
};
```

That is, if the model name starts with `"codex"`, we add `{"type":
"local_shell"}` to the list of tools; otherwise, we add the
aforementioned `shell` tool.

To test this, I ran the TUI with `-m codex-mini-latest` and verified
that it used the `local_shell` tool. Though I also had some entries in
`[mcp_servers]` in my personal `config.toml`. The `codex-mini-latest`
model seemed eager to try the tools from the MCP servers first, so I
have personally commented them out for now, so keep an eye out if you're
testing `codex-mini-latest`!

Perhaps we should include more details with `{"type": "local_shell"}` or
update the following:


fd0b1b0208/codex-rs/core/prompt.md

For reference, the corresponding change in the TypeScript CLI is
https://github.com/openai/codex/pull/951.
2025-05-16 14:38:08 -07:00
Michael Bolin
b4785b5f88 feat: include "reasoning" messages in Rust TUI (#892)
As shown in the screenshot, we now include reasoning messages from the
model in the TUI under the heading "codex reasoning":


![image](https://github.com/user-attachments/assets/d8eb3dc3-2f9f-4e95-847e-d24b421249a8)

To ensure these are visible by default when using `o4-mini`, this also
changes the default value for `summary` (formerly `generate_summary`,
which is deprecated in favor of `summary` according to the docs) from
unset to `"auto"`.
2025-05-10 21:43:27 -07:00
Michael Bolin
e924070cee feat: support the chat completions API in the Rust CLI (#862)
This is a substantial PR to add support for the chat completions API,
which in turn makes it possible to use non-OpenAI model providers (just
like in the TypeScript CLI):

* It moves a number of structs from `client.rs` to `client_common.rs` so
they can be shared.
* It introduces support for the chat completions API in
`chat_completions.rs`.
* It updates `ModelProviderInfo` so that `env_key` is `Option<String>`
instead of `String` (for e.g., ollama) and adds a `wire_api` field
* It updates `client.rs` to choose between `stream_responses()` and
`stream_chat_completions()` based on the `wire_api` for the
`ModelProviderInfo`
* It updates the `exec` and TUI CLIs to no longer fail if the
`OPENAI_API_KEY` environment variable is not set
* It updates the TUI so that `EventMsg::Error` is displayed more
prominently when it occurs, particularly now that it is important to
alert users to the `CodexErr::EnvVar` variant.
* `CodexErr::EnvVar` was updated to include an optional `instructions`
field so we can preserve the behavior where we direct users to
https://platform.openai.com if `OPENAI_API_KEY` is not set.
* Cleaned up the "welcome message" in the TUI to ensure the model
provider is displayed.
* Updated the docs in `codex-rs/README.md`.

To exercise the chat completions API from OpenAI models, I added the
following to my `config.toml`:

```toml
model = "gpt-4o"
model_provider = "openai-chat-completions"

[model_providers.openai-chat-completions]
name = "OpenAI using Chat Completions"
base_url = "https://api.openai.com/v1"
env_key = "OPENAI_API_KEY"
wire_api = "chat"
```

Though to test a non-OpenAI provider, I installed ollama with mistral
locally on my Mac because ChatGPT said that would be a good match for my
hardware:

```shell
brew install ollama
ollama serve
ollama pull mistral
```

Then I added the following to my `~/.codex/config.toml`:

```toml
model = "mistral"
model_provider = "ollama"
```

Note this code could certainly use more test coverage, but I want to get
this in so folks can start playing with it.

For reference, I believe https://github.com/openai/codex/pull/247 was
roughly the comparable PR on the TypeScript side.
2025-05-08 21:46:06 -07:00
Michael Bolin
a9adb4175c fix: enable clippy on tests (#870)
https://github.com/openai/codex/pull/855 added the clippy warning to
disallow `unwrap()`, but apparently we were not verifying that tests
were "clippy clean" in CI, so I ended up with a lot of local errors in
VS Code.

This turns on the check in CI and fixes the offenders.
2025-05-08 16:02:56 -07:00
jcoens-openai
8a89d3aeda Update cargo to 2024 edition (#842)
Some effects of this change:
- New formatting changes across many files. No functionality changes
should occur from that.
- Calls to `set_env` are considered unsafe, since this only happens in
tests we wrap them in `unsafe` blocks
2025-05-07 08:37:48 -07:00
Michael Bolin
421e159888 feat: make cwd a required field of Config so we stop assuming std::env::current_dir() in a session (#800)
In order to expose Codex via an MCP server, I realized that we should be
taking `cwd` as a parameter rather than assuming
`std::env::current_dir()` as the `cwd`. Specifically, the user may want
to start a session in a directory other than the one where the MCP
server has been started.

This PR makes `cwd: PathBuf` a required field of `Session` and threads
it all the way through, though I think there is still an issue with not
honoring `workdir` for `apply_patch`, which is something we also had to
fix in the TypeScript version: https://github.com/openai/codex/pull/556.

This also adds `-C`/`--cd` to change the cwd via the command line.

To test, I ran:

```
cargo run --bin codex -- exec -C /tmp 'show the output of ls'
```

and verified it showed the contents of my `/tmp` folder instead of
`$PWD`.
2025-05-04 10:57:12 -07:00
Michael Bolin
b323d10ea7 feat: add ZDR support to Rust implementation (#642)
This adds support for the `--disable-response-storage` flag across our
multiple Rust CLIs to support customers who have opted into Zero-Data
Retention (ZDR). The analogous changes to the TypeScript CLI were:

* https://github.com/openai/codex/pull/481
* https://github.com/openai/codex/pull/543

For a client using ZDR, `previous_response_id` will never be available,
so the `input` field of an API request must include the full transcript
of the conversation thus far. As such, this PR changes the type of
`Prompt.input` from `Vec<ResponseInputItem>` to `Vec<ResponseItem>`.

Practically speaking, `ResponseItem` was effectively a "superset" of
`ResponseInputItem` already. The main difference for us is that
`ResponseItem` includes the `FunctionCall` variant that we have to
include as part of the conversation history in the ZDR case.

Another key change in this PR is modifying `try_run_turn()` so that it
returns the `Vec<ResponseItem>` for the turn in addition to the
`Vec<ResponseInputItem>` produced by `try_run_turn()`. This is because
the caller of `run_turn()` needs to record the `Vec<ResponseItem>` when
ZDR is enabled.

To that end, this PR introduces `ZdrTranscript` (and adds
`zdr_transcript: Option<ZdrTranscript>` to `struct State` in `codex.rs`)
to take responsibility for maintaining the conversation transcript in
the ZDR case.
2025-04-25 12:08:18 -07:00
Michael Bolin
31d0d7a305 feat: initial import of Rust implementation of Codex CLI in codex-rs/ (#629)
As stated in `codex-rs/README.md`:

Today, Codex CLI is written in TypeScript and requires Node.js 22+ to
run it. For a number of users, this runtime requirement inhibits
adoption: they would be better served by a standalone executable. As
maintainers, we want Codex to run efficiently in a wide range of
environments with minimal overhead. We also want to take advantage of
operating system-specific APIs to provide better sandboxing, where
possible.

To that end, we are moving forward with a Rust implementation of Codex
CLI contained in this folder, which has the following benefits:

- The CLI compiles to small, standalone, platform-specific binaries.
- Can make direct, native calls to
[seccomp](https://man7.org/linux/man-pages/man2/seccomp.2.html) and
[landlock](https://man7.org/linux/man-pages/man7/landlock.7.html) in
order to support sandboxing on Linux.
- No runtime garbage collection, resulting in lower memory consumption
and better, more predictable performance.

Currently, the Rust implementation is materially behind the TypeScript
implementation in functionality, so continue to use the TypeScript
implmentation for the time being. We will publish native executables via
GitHub Releases as soon as we feel the Rust version is usable.
2025-04-24 13:31:40 -07:00