Adds a new ItemStarted event and delivers UserMessage as the first item
type (more to come).
Renames `InputItem` to `UserInput` considering we're using the `Item`
suffix for actual items.
Add annotations and an export script that let us generate app-server
protocol types as typescript and JSONSchema.
The script itself is a bit hacky because we need to manually label some
of the types. Unfortunately it seems that enum variants don't get good
names by default and end up with something like `EventMsg1`,
`EventMsg2`, etc. I'm not an expert in this by any means, but since this
is only run manually and we already need to enumerate the types required
to describe the protocol, it didn't seem that much worse. An ideal
solution here would be to have some kind of root that we could generate
schemas for in one go, but I'm not sure if that's compatible with how we
generate the protocol today.
We continue the separation between `codex app-server` and `codex
mcp-server`.
In particular, we introduce a new crate, `codex-app-server-protocol`,
and migrate `codex-rs/protocol/src/mcp_protocol.rs` into it, renaming it
`codex-rs/app-server-protocol/src/protocol.rs`.
Because `ConversationId` was defined in `mcp_protocol.rs`, we move it
into its own file, `codex-rs/protocol/src/conversation_id.rs`, and
because it is referenced in a ton of places, we have to touch a lot of
files as part of this PR.
We also decide to get away from proper JSON-RPC 2.0 semantics, so we
also introduce `codex-rs/app-server-protocol/src/jsonrpc_lite.rs`, which
is basically the same `JSONRPCMessage` type defined in `mcp-types`
except with all of the `"jsonrpc": "2.0"` removed.
Getting rid of `"jsonrpc": "2.0"` makes our serialization logic
considerably simpler, as we can lean heavier on serde to serialize
directly into the wire format that we use now.
Manually curating `protocol-ts/src/lib.rs` was error-prone, as expected.
I finally asked Codex to write some Rust macros so we can ensure that:
- For every variant of `ClientRequest` and `ServerRequest`, there is an
associated `params` and `response` type.
- All response types are included automatically in the output of `codex
generate-ts`.
Adding the `rollout_path` to the `NewConversationResponse` makes it so a
client can perform subsequent operations on a `(ConversationId,
PathBuf)` pair. #3353 will introduce support for `ArchiveConversation`.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/3352).
* #3353
* __->__ #3352
This PR does multiple things that are necessary for conversation resume
to work from the extension. I wanted to make sure everything worked so
these changes wound up in one PR:
1. Generate more ts types
2. Resume rollout history files rather than create a new one every time
it is resumed so you don't see a duplicate conversation in history for
every resume. Chatted with @aibrahim-oai to verify this
3. Return conversation_id in conversation summaries
4. [Cleanup] Use serde and strong types for a lot of the rollout file
parsing
- In the bottom line of the TUI, print the number of tokens to 3 sigfigs
with an SI suffix, e.g. "1.23K".
- Elsewhere where we print a number, I figure it's worthwhile to print
the exact number, because e.g. it's a summary of your session. Here we print
the numbers comma-separated.
When serializing to JSON, the existing solution created an enormous
array of ints, which is far more bytes on the wire than a base64-encoded
string would be.
The existing `wire_format.rs` should share more types with the
`codex-protocol` crate (like `AskForApproval` instead of maintaining a
parallel `CodexToolCallApprovalPolicy` enum), so this PR moves
`wire_format.rs` into `codex-protocol`, renaming it as
`mcp-protocol.rs`. We also de-dupe types, where appropriate.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/2423).
* #2424
* __->__ #2423