This introduces a much-needed "profile" concept where users can specify
a collection of options under one name and then pass that via
`--profile` to the CLI.
This PR introduces the `ConfigProfile` struct and makes it a field of
`CargoToml`. It further updates
`Config::load_from_base_config_with_overrides()` to respect
`ConfigProfile`, overriding default values where appropriate. A detailed
unit test is added at the end of `config.rs` to verify this behavior.
Details on how to use this feature have also been added to
`codex-rs/README.md`.
Adds `expect()` as a denied lint. Same deal applies with `unwrap()`
where we now need to put `#[expect(...` on ones that we legit want. Took
care to enable `expect()` in test contexts.
# Tests
```
cargo fmt
cargo clippy --all-features --all-targets --no-deps -- -D warnings
cargo test
```
This is the first step in supporting other model providers in the Rust
CLI. Specifically, this PR adds support for the new entries in `Config`
and `ConfigOverrides` to specify a `ModelProviderInfo`, which is the
basic config needed for an LLM provider. This PR does not get us all the
way there yet because `client.rs` still categorically appends
`/responses` to the URL and expects the endpoint to support the OpenAI
Responses API. Will fix that next!
Some effects of this change:
- New formatting changes across many files. No functionality changes
should occur from that.
- Calls to `set_env` are considered unsafe, since this only happens in
tests we wrap them in `unsafe` blocks
This PR replaces the placeholder `"echo"` tool call in the MCP server
with a `"codex"` tool that calls Codex. Events such as
`ExecApprovalRequest` and `ApplyPatchApprovalRequest` are not handled
properly yet, but I have `approval_policy = "never"` set in my
`~/.codex/config.toml` such that those codepaths are not exercised.
The schema for this MPC tool is defined by a new `CodexToolCallParam`
struct introduced in this PR. It is fairly similar to `ConfigOverrides`,
as the param is used to help create the `Config` used to start the Codex
session, though it also includes the `prompt` used to kick off the
session.
This PR also introduces the use of the third-party `schemars` crate to
generate the JSON schema, which is verified in the
`verify_codex_tool_json_schema()` unit test.
Events that are dispatched during the Codex session are sent back to the
MCP client as MCP notifications. This gives the client a way to monitor
progress as the tool call itself may take minutes to complete depending
on the complexity of the task requested by the user.
In the video below, I launched the server via:
```shell
mcp-server$ RUST_LOG=debug npx @modelcontextprotocol/inspector cargo run --
```
In the video, you can see the flow of:
* requesting the list of tools
* choosing the **codex** tool
* entering a value for **prompt** and then making the tool call
Note that I left the other fields blank because when unspecified, the
values in my `~/.codex/config.toml` were used:
https://github.com/user-attachments/assets/1975058c-b004-43ef-8c8d-800a953b8192
Note that while using the inspector, I did run into
https://github.com/modelcontextprotocol/inspector/issues/293, though the
tip about ensuring I had only one instance of the **MCP Inspector** tab
open in my browser seemed to fix things.