In the past, we were treating `input exceeded context window` as a
streaming error and retrying on it. Retrying on it has no point because
it won't change the behavior. In this PR, we surface the error to the
client without retry and also send a token count event to indicate that
the context window is full.
<img width="650" height="125" alt="image"
src="https://github.com/user-attachments/assets/c26b1213-4c27-4bfc-90f4-51a270a3efd5"
/>
This PR adds oauth login support to streamable http servers when
`experimental_use_rmcp_client` is enabled.
This PR is large but represents the minimal amount of work required for
this to work. To keep this PR smaller, login can only be done with
`codex mcp login` and `codex mcp logout` but it doesn't appear in `/mcp`
or `codex mcp list` yet. Fingers crossed that this is the last large MCP
PR and that subsequent PRs can be smaller.
Under the hood, credentials are stored using platform credential
managers using the [keyring crate](https://crates.io/crates/keyring).
When the keyring isn't available, it falls back to storing credentials
in `CODEX_HOME/.credentials.json` which is consistent with how other
coding agents handle authentication.
I tested this on macOS, Windows, WSL (ubuntu), and Linux. I wasn't able
to test the dbus store on linux but did verify that the fallback works.
One quirk is that if you have credentials, during development, every
build will have its own ad-hoc binary so the keyring won't recognize the
reader as being the same as the write so it may ask for the user's
password. I may add an override to disable this or allow
users/enterprises to opt-out of the keyring storage if it causes issues.
<img width="5064" height="686" alt="CleanShot 2025-09-30 at 19 31 40"
src="https://github.com/user-attachments/assets/9573f9b4-07f1-4160-83b8-2920db287e2d"
/>
<img width="745" height="486" alt="image"
src="https://github.com/user-attachments/assets/9562649b-ea5f-4f22-ace2-d0cb438b143e"
/>
# Tool System Refactor
- Centralizes tool definitions and execution in `core/src/tools/*`:
specs (`spec.rs`), handlers (`handlers/*`), router (`router.rs`),
registry/dispatch (`registry.rs`), and shared context (`context.rs`).
One registry now builds the model-visible tool list and binds handlers.
- Router converts model responses to tool calls; Registry dispatches
with consistent telemetry via `codex-rs/otel` and unified error
handling. Function, Local Shell, MCP, and experimental `unified_exec`
all flow through this path; legacy shell aliases still work.
- Rationale: reduce per‑tool boilerplate, keep spec/handler in sync, and
make adding tools predictable and testable.
Example: `read_file`
- Spec: `core/src/tools/spec.rs` (see `create_read_file_tool`,
registered by `build_specs`).
- Handler: `core/src/tools/handlers/read_file.rs` (absolute `file_path`,
1‑indexed `offset`, `limit`, `L#: ` prefixes, safe truncation).
- E2E test: `core/tests/suite/read_file.rs` validates the tool returns
the requested lines.
## Next steps:
- Decompose `handle_container_exec_with_params`
- Add parallel tool calls
We continue the separation between `codex app-server` and `codex
mcp-server`.
In particular, we introduce a new crate, `codex-app-server-protocol`,
and migrate `codex-rs/protocol/src/mcp_protocol.rs` into it, renaming it
`codex-rs/app-server-protocol/src/protocol.rs`.
Because `ConversationId` was defined in `mcp_protocol.rs`, we move it
into its own file, `codex-rs/protocol/src/conversation_id.rs`, and
because it is referenced in a ton of places, we have to touch a lot of
files as part of this PR.
We also decide to get away from proper JSON-RPC 2.0 semantics, so we
also introduce `codex-rs/app-server-protocol/src/jsonrpc_lite.rs`, which
is basically the same `JSONRPCMessage` type defined in `mcp-types`
except with all of the `"jsonrpc": "2.0"` removed.
Getting rid of `"jsonrpc": "2.0"` makes our serialization logic
considerably simpler, as we can lean heavier on serde to serialize
directly into the wire format that we use now.
Manually curating `protocol-ts/src/lib.rs` was error-prone, as expected.
I finally asked Codex to write some Rust macros so we can ensure that:
- For every variant of `ClientRequest` and `ServerRequest`, there is an
associated `params` and `response` type.
- All response types are included automatically in the output of `codex
generate-ts`.
This ensures changes the generated TypeScript type for `ClientRequest`
so that instead of this:
```typescript
/**
* Request from the client to the server.
*/
export type ClientRequest =
| { method: "initialize"; id: RequestId; params: InitializeParams }
| { method: "newConversation"; id: RequestId; params: NewConversationParams }
// ...
| { method: "getUserAgent"; id: RequestId }
| { method: "userInfo"; id: RequestId }
// ...
```
we have this:
```typescript
/**
* Request from the client to the server.
*/
export type ClientRequest =
| { method: "initialize"; id: RequestId; params: InitializeParams }
| { method: "newConversation"; id: RequestId; params: NewConversationParams }
// ...
| { method: "getUserAgent"; id: RequestId; params: undefined }
| { method: "userInfo"; id: RequestId; params: undefined }
// ...
```
which makes TypeScript happier when it comes to destructuring instances
of `ClientRequest` because it does not complain about `params` not being
guaranteed to exist anymore.
This is a very large PR with some non-backwards-compatible changes.
Historically, `codex mcp` (or `codex mcp serve`) started a JSON-RPC-ish
server that had two overlapping responsibilities:
- Running an MCP server, providing some basic tool calls.
- Running the app server used to power experiences such as the VS Code
extension.
This PR aims to separate these into distinct concepts:
- `codex mcp-server` for the MCP server
- `codex app-server` for the "application server"
Note `codex mcp` still exists because it already has its own subcommands
for MCP management (`list`, `add`, etc.)
The MCP logic continues to live in `codex-rs/mcp-server` whereas the
refactored app server logic is in the new `codex-rs/app-server` folder.
Note that most of the existing integration tests in
`codex-rs/mcp-server/tests/suite` were actually for the app server, so
all the tests have been moved with the exception of
`codex-rs/mcp-server/tests/suite/mod.rs`.
Because this is already a large diff, I tried not to change more than I
had to, so `codex-rs/app-server/tests/common/mcp_process.rs` still uses
the name `McpProcess` for now, but I will do some mechanical renamings
to things like `AppServer` in subsequent PRs.
While `mcp-server` and `app-server` share some overlapping functionality
(like reading streams of JSONL and dispatching based on message types)
and some differences (completely different message types), I ended up
doing a bit of copypasta between the two crates, as both have somewhat
similar `message_processor.rs` and `outgoing_message.rs` files for now,
though I expect them to diverge more in the near future.
One material change is that of the initialize handshake for `codex
app-server`, as we no longer use the MCP types for that handshake.
Instead, we update `codex-rs/protocol/src/mcp_protocol.rs` to add an
`Initialize` variant to `ClientRequest`, which takes the `ClientInfo`
object we need to update the `USER_AGENT_SUFFIX` in
`codex-rs/app-server/src/message_processor.rs`.
One other material change is in
`codex-rs/app-server/src/codex_message_processor.rs` where I eliminated
a use of the `send_event_as_notification()` method I am generally trying
to deprecate (because it blindly maps an `EventMsg` into a
`JSONNotification`) in favor of `send_server_notification()`, which
takes a `ServerNotification`, as that is intended to be a custom enum of
all notification types supported by the app server. So to make this
update, I had to introduce a new variant of `ServerNotification`,
`SessionConfigured`, which is a non-backwards compatible change with the
old `codex mcp`, and clients will have to be updated after the next
release that contains this PR. Note that
`codex-rs/app-server/tests/suite/list_resume.rs` also had to be update
to reflect this change.
I introduced `codex-rs/utils/json-to-toml/src/lib.rs` as a small utility
crate to avoid some of the copying between `mcp-server` and
`app-server`.
### Title
## otel
Codex can emit [OpenTelemetry](https://opentelemetry.io/) **log events**
that
describe each run: outbound API requests, streamed responses, user
input,
tool-approval decisions, and the result of every tool invocation. Export
is
**disabled by default** so local runs remain self-contained. Opt in by
adding an
`[otel]` table and choosing an exporter.
```toml
[otel]
environment = "staging" # defaults to "dev"
exporter = "none" # defaults to "none"; set to otlp-http or otlp-grpc to send events
log_user_prompt = false # defaults to false; redact prompt text unless explicitly enabled
```
Codex tags every exported event with `service.name = "codex-cli"`, the
CLI
version, and an `env` attribute so downstream collectors can distinguish
dev/staging/prod traffic. Only telemetry produced inside the
`codex_otel`
crate—the events listed below—is forwarded to the exporter.
### Event catalog
Every event shares a common set of metadata fields: `event.timestamp`,
`conversation.id`, `app.version`, `auth_mode` (when available),
`user.account_id` (when available), `terminal.type`, `model`, and
`slug`.
With OTEL enabled Codex emits the following event types (in addition to
the
metadata above):
- `codex.api_request`
- `cf_ray` (optional)
- `attempt`
- `duration_ms`
- `http.response.status_code` (optional)
- `error.message` (failures)
- `codex.sse_event`
- `event.kind`
- `duration_ms`
- `error.message` (failures)
- `input_token_count` (completion only)
- `output_token_count` (completion only)
- `cached_token_count` (completion only, optional)
- `reasoning_token_count` (completion only, optional)
- `tool_token_count` (completion only)
- `codex.user_prompt`
- `prompt_length`
- `prompt` (redacted unless `log_user_prompt = true`)
- `codex.tool_decision`
- `tool_name`
- `call_id`
- `decision` (`approved`, `approved_for_session`, `denied`, or `abort`)
- `source` (`config` or `user`)
- `codex.tool_result`
- `tool_name`
- `call_id`
- `arguments`
- `duration_ms` (execution time for the tool)
- `success` (`"true"` or `"false"`)
- `output`
### Choosing an exporter
Set `otel.exporter` to control where events go:
- `none` – leaves instrumentation active but skips exporting. This is
the
default.
- `otlp-http` – posts OTLP log records to an OTLP/HTTP collector.
Specify the
endpoint, protocol, and headers your collector expects:
```toml
[otel]
exporter = { otlp-http = {
endpoint = "https://otel.example.com/v1/logs",
protocol = "binary",
headers = { "x-otlp-api-key" = "${OTLP_TOKEN}" }
}}
```
- `otlp-grpc` – streams OTLP log records over gRPC. Provide the endpoint
and any
metadata headers:
```toml
[otel]
exporter = { otlp-grpc = {
endpoint = "https://otel.example.com:4317",
headers = { "x-otlp-meta" = "abc123" }
}}
```
If the exporter is `none` nothing is written anywhere; otherwise you
must run or point to your
own collector. All exporters run on a background batch worker that is
flushed on
shutdown.
If you build Codex from source the OTEL crate is still behind an `otel`
feature
flag; the official prebuilt binaries ship with the feature enabled. When
the
feature is disabled the telemetry hooks become no-ops so the CLI
continues to
function without the extra dependencies.
---------
Co-authored-by: Anton Panasenko <apanasenko@openai.com>
We currently get information about rate limits in the response headers.
We want to forward them to the clients to have better transparency.
UI/UX plans have been discussed and this information is needed.
We need to construct the history different when compact happens. For
this, we need to just consider the history after compact and convert
compact to a response item.
This needs to change and use `build_compact_history` when this #3446 is
merged.
## 📝 Review Mode -- Core
This PR introduces the Core implementation for Review mode:
- New op `Op::Review { prompt: String }:` spawns a child review task
with isolated context, a review‑specific system prompt, and a
`Config.review_model`.
- `EnteredReviewMode`: emitted when the child review session starts.
Every event from this point onwards reflects the review session.
- `ExitedReviewMode(Option<ReviewOutputEvent>)`: emitted when the review
finishes or is interrupted, with optional structured findings:
```json
{
"findings": [
{
"title": "<≤ 80 chars, imperative>",
"body": "<valid Markdown explaining *why* this is a problem; cite files/lines/functions>",
"confidence_score": <float 0.0-1.0>,
"priority": <int 0-3>,
"code_location": {
"absolute_file_path": "<file path>",
"line_range": {"start": <int>, "end": <int>}
}
}
],
"overall_correctness": "patch is correct" | "patch is incorrect",
"overall_explanation": "<1-3 sentence explanation justifying the overall_correctness verdict>",
"overall_confidence_score": <float 0.0-1.0>
}
```
## Questions
### Why separate out its own message history?
We want the review thread to match the training of our review models as
much as possible -- that means using a custom prompt, removing user
instructions, and starting a clean chat history.
We also want to make sure the review thread doesn't leak into the parent
thread.
### Why do this as a mode, vs. sub-agents?
1. We want review to be a synchronous task, so it's fine for now to do a
bespoke implementation.
2. We're still unclear about the final structure for sub-agents. We'd
prefer to land this quickly and then refactor into sub-agents without
rushing that implementation.
## Compact feature:
1. Stops the model when the context window become too large
2. Add a user turn, asking for the model to summarize
3. Build a bridge that contains all the previous user message + the
summary. Rendered from a template
4. Start sampling again from a clean conversation with only that bridge
It turns out that we want slightly different behavior for the
`SetDefaultModel` RPC because some models do not work with reasoning
(like GPT-4.1), so we should be able to explicitly clear this value.
Verified in `codex-rs/mcp-server/tests/suite/set_default_model.rs`.
This adds `SetDefaultModel`, which takes `model` and `reasoning_effort`
as optional fields. If set, the field will overwrite what is in the
user's `config.toml`.
This reuses logic that was added to support the `/model` command in the
TUI: https://github.com/openai/codex/pull/2799.
`ClientRequest::NewConversation` picks up the reasoning level from the user's defaults in `config.toml`, so it should be reported in `NewConversationResponse`.
This PR does the following:
* Adds the ability to paste or type an API key.
* Removes the `preferred_auth_method` config option. The last login
method is always persisted in auth.json, so this isn't needed.
* If OPENAI_API_KEY env variable is defined, the value is used to
prepopulate the new UI. The env variable is otherwise ignored by the
CLI.
* Adds a new MCP server entry point "login_api_key" so we can implement
this same API key behavior for the VS Code extension.
<img width="473" height="140" alt="Screenshot 2025-09-04 at 3 51 04 PM"
src="https://github.com/user-attachments/assets/c11bbd5b-8a4d-4d71-90fd-34130460f9d9"
/>
<img width="726" height="254" alt="Screenshot 2025-09-04 at 3 51 32 PM"
src="https://github.com/user-attachments/assets/6cc76b34-309a-4387-acbc-15ee5c756db9"
/>
This PR changes get history op to get path. Then, forking will use a
path. This will help us have one unified codepath for resuming/forking
conversations. Will also help in having rollout history in order. It
also fixes a bug where you won't see the UI when resuming after forking.
## Unified PTY-Based Exec Tool
Note: this requires to have this flag in the config:
`use_experimental_unified_exec_tool=true`
- Adds a PTY-backed interactive exec feature (“unified_exec”) with
session reuse via
session_id, bounded output (128 KiB), and timeout clamping (≤ 60 s).
- Protocol: introduces ResponseItem::UnifiedExec { session_id,
arguments, timeout_ms }.
- Tools: exposes unified_exec as a function tool (Responses API);
excluded from Chat
Completions payload while still supported in tool lists.
- Path handling: resolves commands via PATH (or explicit paths), with
UTF‑8/newline‑aware
truncation (truncate_middle).
- Tests: cover command parsing, path resolution, session
persistence/cleanup, multi‑session
isolation, timeouts, and truncation behavior.
This adds a simple endpoint that provides the email address encoded in
`$CODEX_HOME/auth.json`.
As noted, for now, we do not hit the server to verify this is the user's
true email address.
This PR adds an `images` field to the existing `UserMessageEvent` so we
can encode zero or more images associated with a user message. This
allows images to be restored when conversations are restored.
Adds support for `ArchiveConversation` in the JSON-RPC server that takes
a `(ConversationId, PathBuf)` pair and:
- verifies the `ConversationId` corresponds to the rollout id at the
`PathBuf`
- if so, invokes
`ConversationManager.remove_conversation(ConversationId)`
- if the `CodexConversation` was in memory, send `Shutdown` and wait for
`ShutdownComplete` with a timeout
- moves the `.jsonl` file to `$CODEX_HOME/archived_sessions`
---------
Co-authored-by: Gabriel Peal <gabriel@openai.com>
Adding the `rollout_path` to the `NewConversationResponse` makes it so a
client can perform subsequent operations on a `(ConversationId,
PathBuf)` pair. #3353 will introduce support for `ArchiveConversation`.
---
[//]: # (BEGIN SAPLING FOOTER)
Stack created with [Sapling](https://sapling-scm.com). Best reviewed
with [ReviewStack](https://reviewstack.dev/openai/codex/pull/3352).
* #3353
* __->__ #3352
This PR does multiple things that are necessary for conversation resume
to work from the extension. I wanted to make sure everything worked so
these changes wound up in one PR:
1. Generate more ts types
2. Resume rollout history files rather than create a new one every time
it is resumed so you don't see a duplicate conversation in history for
every resume. Chatted with @aibrahim-oai to verify this
3. Return conversation_id in conversation summaries
4. [Cleanup] Use serde and strong types for a lot of the rollout file
parsing
- In the bottom line of the TUI, print the number of tokens to 3 sigfigs
with an SI suffix, e.g. "1.23K".
- Elsewhere where we print a number, I figure it's worthwhile to print
the exact number, because e.g. it's a summary of your session. Here we print
the numbers comma-separated.
We're trying to migrate from `session_id: Uuid` to `conversation_id:
ConversationId`. Not only does this give us more type safety but it
unifies our terminology across Codex and with the implementation of
session resuming, a conversation (which can span multiple sessions) is
more appropriate.
I started this impl on https://github.com/openai/codex/pull/3219 as part
of getting resume working in the extension but it's big enough that it
should be broken out.
When item ids are sent to Responses API it will load them from the
database ignoring the provided values. This adds extra latency.
Not having the mode to store requests also allows us to simplify the
code.
## Breaking change
The `disable_response_storage` configuration option is removed.
This PR introduces introduces a new
`OutgoingMessage::AppServerNotification` variant that is designed to
wrap a `ServerNotification`, which makes the serialization more
straightforward compared to
`OutgoingMessage::Notification(OutgoingNotification)`. We still use the
latter for serializing an `Event` as a `JSONRPCMessage::Notification`,
but I will try to get away from that in the near future.
With this change, now the generated TypeScript type for
`ServerNotification` is:
```typescript
export type ServerNotification =
| { "method": "authStatusChange", "params": AuthStatusChangeNotification }
| { "method": "loginChatGptComplete", "params": LoginChatGptCompleteNotification };
```
whereas before it was:
```typescript
export type ServerNotification =
| { type: "auth_status_change"; data: AuthStatusChangeNotification }
| { type: "login_chat_gpt_complete"; data: LoginChatGptCompleteNotification };
```
Once the `Event`s are migrated to the `ServerNotification` enum in Rust,
it should be considerably easier to work with notifications on the
TypeScript side, as it will be possible to `switch (message.method)` and
check for exhaustiveness.
Though we will probably need to introduce:
```typescript
export type ServerMessage = ServerRequest | ServerNotification;
```
and then we still need to group all of the `ServerResponse` types
together, as well.